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Abstract 
This research incorporates artificial intelligence (AI) into asset integrity and process safety (AIPS) management, aiming 
to revolutionize conventional methods. It facilitates the automation of risk assessments, enhances predictive analytics, 
and supports the development of proactive measures to mitigate potential incidents. It explores the application of a 
generative pre-trained transformer (GPT) based large language models (LLM) to analyse and classify AIPS indicators 
from vast datasets to generate actionable recommendations to prevent future incidents. A comparative study between 
two onshore liquefied natural gas (LNG) plants; one utilizing AI-driven AIPS management and the other relying on 
manual data analysis is presented. The results indicate that AI-driven approaches significantly enhance the accuracy 
and speed of incident classifications, reducing data processing times. The test model effectively predicts potential 
future failures by analysing past incident patterns, enabling informed decision-making to prevent and mitigate future 
failures. The findings highlight the importance of adopting AI-driven AIPS management as a standard practice. It also 
emphasises the need for stronger collaboration between academia and industry in AI solutions to drive technological 
advancements for sustainability.

Keywords: Asset Integrity, Process Safety, Large Language Model, Generative Pre-Trained Transformers, Artificial 
Intelligence, Asset Integrity, Process Safety, Key Performance Indicators, Predictive Analytics

Introduction
Asset Integrity and Process Safety (AIPS) Management is a structured framework for ensuring that the integrity of 
hazardous processes is maintained by implementing best engineering, operational and maintenance strategies. The 
primary objective is to prevent and control incidents that could result in the release of hazardous materials or energy 
with the potential of leading to catastrophic consequences, such as fatalities and irreversible property and environmental 
damage. This research investigates the potential of customizing a large language model (LLM) for a specific industrial 
case of AIPS to advance sustainability of onshore refineries and petrochemical installations. The case involves analysing 
vast databases to identify AIPS incidents, classifying them into their respective categories, and to generate matching 
mitigating recommendation for each. The objective is to leverage AI-driven insights to make timely decisions to avoid 
future incidents for sustainability.
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The process industry is experiencing a swift technological evolution, driven by the accelerated adoption of artificial 
intelligence (AI) to promote sustainability efforts. This trend was prominently highlighted at the Abu Dhabi International 
Petroleum Exhibition and Conference (ADIPEC) held between 4th and 7th November 2024. ADIPEC is the largest 
and most comprehensive annual global event that brings together the world’s key players in the energy sector under 
one roof to share knowledge and showcase technological advancements. The 2024 conference focused on AI-driven 
technologies as the key enabler of innovation to power the transition towards a more sustainable energy sector [1]. 

Conversely, there is a reluctance in embracing AI, particularly large language models (LLMs), as learning tools to support 
research and reduce students’ workload. LLMs can be trained to understand, predict, and generate human-like text that 
are both coherent and contextually relevant in response to inquiries. There are genuine concerns on their impact on 
students critical thinking, originality, and on academic integrity, leading to the cautious approach to their adoption [2-3]. 
However, it is imperative to fully embrace AI as a compliment to human intellect rather than supplant. Emphasised that 
integration of AI can only foster critical thinking among students allowing them to focus on higher-order cognitive skills 
essential for navigating complex problems [4]. From this perspective, claims that embracing AI could lead to innovation 
that actively involves critical, analytical thought [5]. This positions the academia and the manufacturing industry to 
collaborate in harnessing the promises of AI while at the same time reinforcing the foundational principles of critical 
inquiry that drives academic research and innovation. One potential area of such collaboration is the integration of AI 
into AIPS management strategies.

One of the LLM tools is generative pre-trained transformers (GPT), that can analyse large data sets to identify trends and 
predict anomalies to facilitate quick decision-making [6,7]. To illustrate, by taking advantage of their natural language 
pro-cessing capacities, safety critical information such as loss of primary containment (LOPC) and instrumented functions 
trips can be extracted from large unstructured data sources to improve the quality of reporting [8]. However, to fully 
harness the potential of this technology, it is important to first address employee competencies, particularly in accurately 
capturing quality data using the various tools employed in the industry. Some of these tools are summarised below.
					   
Industrial Data Management Tools
The optimisation of operations in the petrochemical sector depends much on data management and decision-making tools. 
These technologies include enterprise resource planning (ERP), laboratory information management systems (LIMS), 
asset management and manufacturing control software. ERP integrates workstreams for data flow across functions 
facilitating simplified operations by managing inventories, tracking production schedules and optimising maintenance 
and supply chain logistics [9]. Systems, Applications and Products in Data Processing (SAP) is the reference ERP, with its 
main modules being the main sources of data. For instance, SAP PM (Plant Maintenance) is used to plan maintenance 
tasks, schedules, workload distribution, and track asset performance metrics. These metrics include mean time between 
failures (MTBF), maintenance backlogs, and mean time to repair (MTTR). SAP MM (Materials Management) handles 
procurement and inventory management, ensuring that optimal levels of materials and spare parts are available when 
needed reducing costs associated with overstocking or stockouts; SAP PP (Production Planning) optimises manufacturing 
processes by ensuring that production activities are aligned with demand forecasts and resource availability; SAP 
FI (Finance) for financial transactions that include cost tracking, accounting, and financial reporting. Of the most 
importance to this work is SAP EHS that supports risk management through structured incident database management 
and root cause analysis to arrive at actionable corrective and preventative actions (CAPA). Integrating SAP EHS with AI 
technologies can maximise its capacity to providing predictive insights for better operational effectiveness and safety 
[10].

LIMS are for laboratories’ data management for product quality control. By automating data collection and information 
accessibility, LIMS helps compliance with set industrial standards such as ISO 9001. They provide valuable information 
on the quality and consistency of products, minimizing errors and time of operational inactivity [11].

Health, safety, and environmental management systems (HSEMS) drive compliance to established statutory and 
regulatory protocols while facilitating risk mitigation strategies. The incorporation of data-driven insights into process 
control and HSEMS can enhance the identification of potential hazards to implement appropriate mitigation measures 
before deviations or incidents can occur [12-14]. 

Table 1 presents a selection of key data management tools along with their industrial applications. A subset of these 
tools serves as data sources utilized in this work for demonstration purposes.

Category System/Tool Description
Enterprise Resource Planning (ERP) SAP Integrated management of core 

business processes such as 
procurement, production, inventory, 
and finance.

Oracle ERP Modules for asset management, supply 
chain, and operational efficiency.
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IFS Applications Asset management, project 
management, and real-time 
operational visibility.

Microsoft Dynamics 365 Cloud-based solutions for operational 
data, financials, and asset 
management.

Process Control and Automation Honeywell Process Solutions (HPS) Process automation, real-time 
monitoring, and optimization.

Emerson DeltaV Distributed Control System (DCS) for 
production and operational control.

Schneider Electric’s EcoStruxure Manages operational data with energy 
and asset optimization.

Laboratory Information Management 
Systems (LIMS)

LabWare LIMS Manages lab samples, test results, and 
compliance.

STARLIMS Quality control and data tracking for 
testing petrochemical products.

PerkinElmer Informatics Solutions for research, development, 
and production analytics.

Asset and Maintenance Management Maximo (IBM) Asset management software for 
predictive maintenance and reliability.

Infor EAM Lifecycle and performance 
management of physical assets.

Production and Operation Management AspenONE (AspenTech) Process optimization; production 
planning.

Table 1: Examples of Industrial Data Management Tools

Open-Source LL-GPT Models
This section examines the capabilities, strengths and limitations of open-source LL-GPT models to evaluate their 
suitability to manage AIPS performance. GPT-Neo can provide simple summaries by processing both structured and 
semi-structured inputs. However, the need for domain-specific pretraining limits its efficacy in handling large data. For 
accurate results, these constraints can be overcome with dataset fine-tuning. Despite being flexible, it is not as strong 
as other LLM models since it relies on external predictive tools for risk analysis and computing efficiency [15].

GPT-J is an improved version of GPT-Neo with additional natural language processing capabilities. It has the potential 
to process large datasets compared to GPT-Neo in addition to reports generation. It can interpret specific industrial 
terminologies relevant to the oil and gas applications with additional fine tuning. However, for advanced predictive 
modelling, it still requires integration with external risk assessment tools [16].

Bloom can be well for AIPS management practices in global operations and cross-border compliance because of its 
ability to generate reports in several languages. This makes it ideal for multinational corporations managing asset 
integrity across different geographical locations. However, without additional analytical tools, it suffers limitations in 
providing predictive insights. Regardless of these constraints, the tool has linguistic versatility makes it advantageous 
over other applications in multilingual industrial environments [17].

LLaMA excels in the real-time processing of structured and semi-structured data with lower computational and resource 
demands. Like most, it also required fine tuning to improve its precision to identify specific terminologies. Moreover, it 
can be integrated with external systems for predictive risk analysis. This can facilitate the identification of potential risks 
by evaluation of historical data. Because of its computational efficiency and lightweight design, it is appealing for real-
time reporting and risk assessment with fewer computational demands [18]. 

ChatGPT-Data Analyst performs better than the others. It offers precise information, is quicker, and is easy to use. It 
produces accurate reports with little fine-tuning, handling both structured and unstructured data. It is a top option for 
AIPS management due to its scalability and stated benefits [19].

LLM GPT Model AIPS KPI Reporting Predictive Risk 
Insights

Strengths Limitations

GPT-Neo Basic KPI reporting 
requires extensive 
fine-tuning for domain-
specific applications.

Limited capabilities 
require external tools 
for predictive modelling.

Accessible, flexible. Limited contextual 
understanding and 
scalability.
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GPT-J Generates detailed, 
context-aware reports; 
handles terminology 
with fine-tuning.

Better pattern 
recognition; still relies 
on external predictive 
frameworks.

Improved contextual 
capabilities.

Lacks built-in advanced 
predictive features.

Bloom Multilingual reporting 
for diverse geographies; 
effective for large-scale 
operations.

Limited predictive 
capabilities; relies on 
supplementary tools.

Multilingual, 
contextually rich.

High computational 
requirements for real-
time use.

LLaMA Efficient real-time 
structured data 
reporting; highly 
adaptable to fine-
tuning.

Supports integration 
with external tools for 
predictive insights.

Lightweight, efficient for 
real-time tasks.

Predictive capabilities 
require supplementary 
tools.

ChatGPT-DataAnalyst High-speed, precise 
reporting for structured 
and unstructured data.

Strong pattern 
recognition for proactive 
risk assessment.

Scalable, minimal fine 
tuning needed.

Less established for 
specific industrial 
terminologies.

Table 2: Summary of Considered Open-Source LL-GPT Models

Literature Review
The reviewed articles identified five common overlapping themes on AI-driven applications AIPS management as 
outlined below.
•	 Proactive Risk Management: Includes real-time system monitoring and predictive maintenance to identify 

irregularities early.
•	 Digitalization of Safety Data: Analysis of extensive data on safety incidents to aid decision making.
•	 Optimization of Alarm Management: This is where alarms are optimised by lowering the number of false 

positives and nuisances so that operators may concentrate on the import ones.
•	 Integration with Human Factors: Using AI-powered simulations in training programs to improve human 

experiences. 
•	 Resilience Modelling: Advancing process resilience by foreseeing possible interruptions and implementing 

preventative measures in advance.

Relied on bow tie analysis to visualise failure scenarios, which enabled optimised risk-based inspections [20]. This 
made it easier to switch from reactive to predictive maintenance strategies and provided a structure to identify possible 
weaknesses in dangerous operations. In contrast, questioned the use of operators to control the functionality of critical 
equipment and systems (CES), emphasising the need to set realistic expectations for human capabilities [21]. Despite 
focusing on technical systems and on human factors, both underscore the importance of proactive strategies to address 
system vulnerabilities [20,21].

Bow-Tie Component Description
Hazard and Top Event A hazard is the potential source of risk (e.g., loss of containment of hydrocarbons). 

The top event is the incident that results from loss of control over the hazard (e.g., an 
oil spill or gas explosion).

Threats and Preventive Barriers Threats are causes or initiating events that lead to the top event. These include 
equipment failures and human errors. Preventive barriers are safeguards to reduce 
the likelihood of these threats. These include engineering controls such as pressure 
relief systems and operational procedures.

Consequences and Mitigative Barriers Consequences are potential negative outcomes, such as environmental damage, 
financial losses and human casualties.
Mitigative barriers are measures that reduce the severity of these consequences. 
These include emergency response plans and fire suppression systems.

Table 3: Main Components of a Bow-Tie Model [20]

The works of investigated the reliability and sustainability frameworks in industrial operations [22,23]. Proposed a 
hierarchical model to integrate both leading and lagging indicators to prioritize risks to make risk-based decisions [22]. 
In contrast, adopted a broader perspective that aligned risks to their effects, regardless of the magnitude of their impacts 
[23]. While emphasize the quantification of risks through performance indicators, extend their focus to encompass the 
broader impacts of asset management on sustainability [22, 23]. Both and provide alternative methods for managing 
AIPS and provide insightful information that may be incorporated with AI to create a well-rounded strategy [22,23].

The work of investigated the function of preventive maintenance (PM) in a wastewater treatment facility, focusing on the 
ways that proactive maintenance lowers environmental hazards and minimises interruptions [24]. Conversely, proposed 
an integrated maintenance system that incorporates a several techniques such as reliability-centred maintenance 
(RCM) and risk-based inspections (RBI) [25]. Focused on environmental challenges in resource-intensive systems, while 
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addressed complex industrial maintenance needs [24,25]. The significance of PM techniques in lowering operational 
risks for sustainability and tailored AI-driven maintenance strategies are emphasised by both studies.

concur that using creative approaches may improve adherence to safety regulations [26,27]. A simpler Markov-based 
method that lowers the complexity of safety modelling was introduced in which concentrated on Safety Integrity Level 
(SIL) verification [26]. Deficits in AIPS information handling that may impact research like SIL were discussed in [27]. 
To effectively manage risks, the study emphasised the need for customised safety data that corresponds with real-
world process situations. LL-GPT capabilities can leverage their shared focus to simplify complex procedures and tailor 
strategies to real-world scenarios.

Studies by have the common objectives of minimising industrial incidents through proactive measures emphasising the 
significance of integrating safety measures early in a project lifecycle [28,29]. Proposed an evidence-based data driven 
incident prevention framework to bridge the gap between research and industrial practice, proposed Inherent System 
Safety Index (ISSI) to evaluate safety at the design stages [28,29]. Both had creative ideas, but they failed to emphasise 
how AI could be incorporated into their work [28,29].

Share a focus on enhancing hazard identification and risk prioritisation through structured and systematic methodologies 
[30,31]. Combined Fuzzy Multi-Criteria Decision-Making (FTOPSIS) with HAZOP for risk evaluation and supporting 
preventive strategies [30]. On the other hand, used Layers of Protection Analysis (LOPA) for SIL determination for 
cumulative risk assessment [31]. Both support proactive risk management and address the limitations of traditional risk 
assessment methods [30,31]. While focused on a specific case of a biogas process unit, gave a global approach that 
harness the capabilities of AI across diverse industries [30,31]. 

The researches looked into safety improvements through advanced monitoring [32,33]. Both studies tackle vulnerabilities 
that could otherwise lead to catastrophic failures if not managed well. Addressed alarm flooding that hindered operator 
response and proposed a two-level Intelligent Alarm Management Framework (IAMF) to filter redundant alarms and 
diagnoses their causes [32]. On the other hand, investigated cyber security risks on process control systems, proposing 
the identification of Basic Process Control Systems (BPCS) and Safety Instrumented Systems (SIS) vulnerabilities [33]. 
Both studies accentuate on the importance of root-cause identification for preventing cascading failures and maintaining 
operational safety. Together, these works highlight the need for robust strategies to address evolving risks in industrial 
systems, from alarm management to cyber security.

underlined the transformative potential of AI and Industry 4.0 technologies, such as digital twins to advance AIPS 
management [34]. They showcased how these innovations can manage safety critical equipment (SCE) and support 
the development of their performance standards. However, the authors do not provide a concrete case study to validate 
their recommendations implementation in the oil and gas industry.

Traditionally, risk evaluation has relied on historical data and expert judgment, an approach that falls short in today’s 
fast-paced environments. AI offers a solution by rapidly analysing large datasets, enabling accurate and timely risk 
assessments. As demonstrated, AI technologies can identify potential risks by analysing data that human analysts might 
overlook [35]. For instance, machine learning algorithms can process sensor data in real-time, calculate the likelihood 
of incidents, and support proactive preventive measures. While the study offers valuable theoretical perspectives, it 
lacks practical case studies to illustrate the real-world benefits of the proposed approaches, especially in the oil and gas 
industry.

Discussed leveraging AI to predict equipment failures based on usage patterns, maintenance history, and environmental 
to identify weaknesses in existing safety practices and propose effective solutions [36,37]. Outlined leveraging AI to 
enrich employee learning experiences, for example, utilizing virtual reality platforms for realistic on the job scenarios 
that employees might encounter [38,39]. Although the authors present valuable theoretical insights, they do not support 
their proposals with empirical case studies to demonstrate the mentioned capabilities with specific relevance to the 
industry.

The foreseen challenges for implementing AI in AIPS management include organizational resistance, as some employees 
may fear job displacement. To counter employees’ fears, AI tools should be designed as complementary tools to enhance 
human performance rather than to replace them. Suggests that integrating AI while enhancing employees’ professional 
skills leads to more efficient work practices leading to workforce acceptance [40]. Privacy and data security also pose 
significant risks, as large data and information are analysed, some of which may be sensitive and confidential. As 
emphasized establishing robust data governance frameworks protect sensitive information, without which organizations 
become vulnerable to data breaches [41].

By analysing extensive datasets from various operational aspects, companies can uncover actionable insights that foster 
innovation and efficiency. This enables the optimization of resources aligning with the broader sustainability goals of 
the sector. Emerging technologies such as Blockchain and distributed detection systems are beginning to play a role in 
improving the integrity and traceability of data. These technologies promise to further improve operational efficiencies 
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by guaranteeing data reliability and facilitating real -time operations monitoring. As these systems continue to advance, 
their roles in shaping and improving decision-making processes becomes increasingly vital [42-44].

Materials and Methods
Two similar sites were analysed comparatively over a period of 1 year between January 2024 to January 2025, to 
assess their performance using a set of the set of AIPS KPIs in Table 4. These indicators provided valuable insights on 
operational risks, AIPS, and reliability. The KPIs for Management of Change (MoC) and the maintenance of SCE were 
consolidated into a single averaged KPI, as both showed similar trends.

KPI Code KPI Description Notes
#LOPC (KPI1) Number of Loss of Primary Containments An increasing number indicates poor plant safety 

and integrity performance
#PRDActiv (KPI2) Number of Pressure Relieve Device (PRD) 

Activations 
An increasing number indicates operational 
challenges and system challenges requiring 
immediate attention. PRDs, including safety valves, 
are designed to release excess pressure when they 
exceed safe operating limits, acting as a safeguard 
to prevent equipment failure.

# SISAct(KPI3) Number of Safety Instrumented Systems 
Activations

SIS activations reflect the effectiveness of safety 
mechanisms in responding to unsafe conditions. 
Frequent activations signal operational risks and 
inefficiencies, while low or decreasing activations 
indicate stable and well-managed processes. 

# Ttrip (KPI4) Number of Trips leading to Shutdown of 
Equipment, Unit or Whole plant

Frequent equipment trips indicate process 
inefficiencies, or inadequate maintenance, while a 
reduction in trips reflects improved system stability 
and operational control. This KPI provides critical 
insights into the health of the system, helping to 
minimize downtime, prevent damage, and maintain 
consistent production levels.

# PCI (KPI5) Number of Primary Containment Inspections 
and Testing Results Outside Acceptable Limits 

This applies specifically to vessels, reactors and heat 
exchangers, where an increasing number reflects 
declining equipment integrity, potentially leading to 
catastrophic failures.

#SOLExc (KPI6) Number of Safe Operating Limits (SOL) 
excursions 

A higher frequency of SOL excursions suggests that 
the process is consistently operating at or beyond 
its established safety boundaries, often indicating 
underlying issues such as inadequate process 
control, subpar equipment performance, or deficient 
maintenance practices.

#FALSECAlam (KPI7) Number of False Critical Alarms Activations A rising frequency of false critical alarm activations 
suggests potential shortcomings in alarm 
management and process control systems. This may 
be due to alarm thresholds that are set too loosely 
or too tightly, inaccurate sensor calibrations, or 
malfunctioning control loops, all of which contribute 
to misleading alarm signals that do not accurately 
reflect the system’s true status.

%OverdueSCEMain 
(KPI8)

Percentage of Safety Critical Equipment 
Overdue for Maintenance 

A growing backlog of overdue maintenance on 
safety-critical equipment clearly signals systemic 
deficiencies in asset management and maintenance 
scheduling. This trend not only points to potential 
resource limitations and misaligned organizational 
priorities but also undermines the overall reliability 
and integrity of essential safety systems.

%MoCComp (KPI9) Percentage of Management of Change Non-
Compliance 

A higher frequency of Change non-compliance 
events signals a failure in the organization’s 
change control process modifications to processes, 
equipment, or procedures are not being adequately 
reviewed, documented, or approved.

Table 4: AIPS Key Performance Indicators
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A structured analysis to assess the capabilities of several open-source LLM GPT models was conducted to identify the 
most suitable for automating AIPS KPIs reporting and to generate predictive insights. ChatGPT-DataAnalyst was selected 
over GPT-Neo, GPT-J, Bloom, and LLaMA because it offers better fine-tuning options and has a higher scalability in 
generating precise insights [45].

KPI Data Sourcing
The data used in this study was obtained from four primary databases outlined in Table 1. 
•	 General Incident Logs: This includes data from the Distributed Control System (DCS), Management of Change 

(MOC) logs, Root Cause Analysis (RCA) logs, overrides of process safeguarding systems, and downgraded situations, 
all of which are recorded in a standardized Excel-based spreadsheet for efficient tracking and analysis. The incidents 
are categorized into specific types, including near-misses, emergency incidents, equipment failures and process 
deviations. 

•	 SAP Asset and Maintenance Management: This is a tool for optimizing the lifecycle performance and reliability 
of physical assets across industries. It integrates tools for planning, monitoring, and executing maintenance tasks. 
The solution has powerful features like managing work orders, keeping track of assets, and planning preventative 
maintenance. It also helps with regulatory compliance by keeping detailed records of asset activities and speeding 
up safety processes.

•	 SAP Incident Management Module: This is part of the SAP S/4HANA suite for managing safety, health, 
environmental, and operational performance incidents. The module provides a functionality for incident categorization 
and an actions tracker. 

•	 Meridiam Incident Database: Meridian software offers solutions designed to optimize engineering document 
control, incident management, regulatory compliance, and asset lifecycle management. It centralizes and secures 
critical equipment performance data while ensuring seamless access, making it an essential tool for industries that 
rely on complex engineering workflows.

Data Preparation
Insights from underscore that meticulous attention to data preparation is beneficial for robust analysis and for generating 
reliable, actionable insights [46]. Given the complexity and volumes of the data, the steps below were taken to clean, 
standardize, and transform it data from the various sources into a format suitable for analysis. This process is presented 
by Figure 1.
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Figure 1: Data Preparation Workflow for LLM Analyses

Data Refinement
This entailed removing undesirable or inappropriate indicators, correcting spacing problems, and making inputs uniform. 
Records with missing or ambiguous values were synchronised. Additionally, any anomalies such as duplicate entries or 
incorrect classifications, are identified and removed to maintain the integrity of the dataset.

Once the data was cleaned, it was transformed into a structured format suitable for LLM model processing. This required 
reformatting the content of within incident descriptions, performance notes, and safety records so that they could be 
incorporated into the natural language processing features. For example, incident descriptions that were tokenized, and 
key terms related to AIPS (such as “barrier failure”, “hazard”, “loss of primary containment” etc.) were tagged for further 
analysis. This step ruled out the collection of irrelevant information and arranged it to make it easier to categorize and 
analyse [47].
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LLM GPT Application
The model was utilized to analysed and categorize AIPS data and KPIs, as outlined [48-52]. This was aimed at enhancing 
the accuracy and clarity of the outputs, which were subsequently employed to generate predictive insights.
•	 Text Processing and Categorization: The first task involved text preprocessing, whereby the model was prompted 

to read through the incident reports, safety observations, and operational data. From the textual records, ChatGPT-
Data Analyst interpreted these and recognizes features, including the type of incident, its severity, and anticipated 
causes. The model categorised the incidents into predefined tiers based given by API 754 standard, which divides 
incidents into four distinct categories: major incidents, serious incidents, near misses, and performance indicators.

•	 Data Enrichment and Classification: After processing the data, LLM model was used to enrich the dataset by 
adding contextual insights. To visualize safety hardware barriers, events containing “loss of primary containment” 
were related to specific control actions depending on the failed equipment. For example, corrosion monitoring and 
risk-based inspections for vessels and mechanical seals replacements for large pumps. These outputs are presented 
in detail as part of the results in the next chapter.

Results
The results of this study are three-fold (1) generated predictive insights from the AI model; (2) a demonstration of AI 
integration in AIPS KPI analysis and (3) a comparative assessment of AIPS management between two sites. 

1.2.3.Predictive Insights
The generated predictive insights categorised AIPS events, identifying recurring failure patterns for proactive risk 
mitigation. By analysing leak sources, historical incident trends, LOPC data, the system pinpoints high-risk areas and 
gave maintenance efforts to prioritise. Ultimately, these insights shift from reactive incident management to proactive 
prevention to significantly reduce safety risks and operational disruptions.

Event iD Metric Root causes LLM generated incident mitigation insights
200001 Hydrocarbon Leak 

Upstream P002PC
Pipeline material 
degradation, corrosion, 
lack of leak detection

Process & Risk Assessment
Regular HAZOP/LOPA studies and scenario simulations
Mechanical Integrity
Use corrosion-resistant materials; implement NDT and stress testing
Instrumentation
Install smart leak detection sensors with automatic shutdown 
capabilities
Operational Practices
Routine inspections and operator training on emergency shutdown 
procedures

200004 Sulphuric Acid Leak 
at Tank V321 Main 
Outlet Valve

Material incompatibility, 
seal degradation, valve 
failure

Process and Risk Assessment
Update risk analysis for corrosive substances
Mechanical Integrity
Upgrade valve materials and seals; perform frequent integrity tests
Instrumentation
Implement remote monitoring with early leak detection alarms
Operational Practices
Regular maintenance and pre-shift checklists for critical valves
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200005 Large Steam Leak 
from Boiler 322 Main 
Outlet Manifold

High pressure/
temperature stresses, 
joint failures

Process and Risk Assessment
Include thermal stress scenarios in digital twins
Mechanical Integrity
Conduct regular pressure and temperature tests; ensure high-
standard welds and bolted joints
Instrumentation
Use thermal imaging and smart sensors to detect anomalies
Operational Practices
Scheduled maintenance and operator drills for high-pressure 
systems

200006 H2S-Rich Lean 
Amine Leak from 
Pump 2-G-0303C 
Double Isolation 
Manifold

H2S-Rich Lean Amine 
Leak from Pump 
2-G-0303C Double 
Isolation Manifold

Process and Risk Assessment
Reassess double isolation design with risk ranking for H2S releases
Mechanical Integrity
Frequent testing of seals/gaskets and enhanced manifold design
Instrumentation
Install additional H2S sensors and alarms near critical points
Operational Practices
Strict maintenance schedules and emergency response training for 
H2S incidents

200007 Loss of High-Level 
Control at 554V101 
Leading to Liquid 
Overflow

Control system failure, 
sensor malfunction, 
absence of redundancy

Process and Risk Assessment
Incorporate control system failure modes in hazard analysis
Mechanical and Instrumentation Controls
Retrofit with dual redundant level sensors; implement automatic 
shutdown/diversion systems
Operational Practices
Regular calibration checks and pre-emptive inspections; install 
secondary overflow containment systems

Table 5: LLM Generated Mitigation Insights with Respect to an Incident

AI Assisted AIPS KPI Analysis
The categorization of AIPS KPIs from about 15,000 entries took five working days to complete manually. In contrast, 
the same task with validation took less than 50 - 70 minutes using LLM (GPT Data Analys). The substantial time 
savings present a compelling justification for the adoption of AI-driven data analysis to reduce human effort, accelerates 
decision-making, and to optimizes resource allocation. 

The data validation presented in Table 6 involved a comparison to evaluate the accuracy of LLM-generated insights 
against manually verified data. Data Analyst correctly categorized 19458 out of 21046 AIPS KPI, incorrectly categorising 
1588 entries, yielding a confidence of 92%: the ratio between the two. This demonstrates a high level of agreement 
between AI-generated insights and human evaluations, with minor discrepancies.
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GPTDataAnalyst 3576 3368 4869 1846 2983 1217 1600 19458 50-70 minutes
Validated Results 3934 3714 5204 1982 3179 1289 1744 21046 4-5 days
Wrongly Classified 358 346 335 136 197 72 144 1588 -
% Error 9% 9% 6% 7% 6% 6% 8% 8% -

Table 6: Data Validation Results

The validated data generated by the LLM achieved 92% accuracy. Despite minor discrepancies, the significant time 
savings and consistency demonstrates the value of adopting AI for AIPS management.
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Discussion
This work introduces a novel approach that customises an LLM model to improve AIPS performance for sustainable 
onshore petrochemical installations. Two liquefied natural gas plants have been used to comparatively access the 
efficacy of the model. The model can accurately and consistently classify AIPS incidents from several large databases 
reducing the reliance on subjective manual interpretations reducing the time it takes to manually process data. By 
scaling down on manual interventions, human errors are greatly minimised. 

This is an additional tool for text-based intelligence to compliment sensor based monitoring and predictive analytics to 
improve safety performance. This is a significant bridge that closes the gap between structured safety data from digital 
sensor logs and unstructured data from manual sources such as incident reports and shift logs.

Furthermore, the study demonstrates how to fine GPT to assist in decision making processes in AIPS management 
by providing safety recommendations for proactive safety management. Normally, safety assessments depend expert 
judgments, which are prone to human error in addition to them being intensive. In summary, these are the key pointers 
from this work:
•	 Automated Incident Categorization: analysis of large volumes of shift logs, incident reports, and sensor alerts 

to classify AIPS incidents into predefined categories (e.g., equipment failure, human error, hazardous material 
release).

•	 AI-Assisted Decision-Making for AIPS: interpretation of historical safety reports, to generate contextual safety 
recommendations.

•	 Knowledge-Driven AIPS Framework: Synthesising lessons learned from previous incidents, providing actionable 
insights for continuous AIPS improvement and risk reduction.

Conclusions
This research emphasises for the adoption of AI as best practice in AIPS management highlighting its transformative 
impact on operational risk mitigation, and sustainability. The findings strongly reinforce that if effectively implemented, 
AI technologies will drive efficiency in AIPS management and contribute to long-term sustainability through data-driven 
safety insights.

The study emphasises more collaboration between the academia and the industry in AI research and application to 
drive innovation for sustainable development with the academia contributing to theoretical insights and the industry 
contributing practical expertise, resources, and real-world applications. Such collaboration will bridge the gap between 
theoretical advancements and their practical implementation. The work provides a foundation for such collaboration by 
exploring AI’s role in sustainable safety management in the industry.
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