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Abstract 
This is a purely analytical information theory work. We will uncover interesting links between Fisher’s mea- sure and 
Gibbs’ ensembles, particulary the grand canonical and canonical ones, each offering distinct insights into a system’s 
properties. In this effort, we construct an informational connection between these ensembles, based on Fisher’s measure. 

We specifically explore the relationships among four key concepts: 
• The canonical and grand canonical ensembles.
• Fisher information measures applied to three parameters (inverse tempera- ture, particle number, and fugacity).
• The Fano factor.
• Special Poisson probability distributions (PDs) that are related to grand canonical PDs by having the same mean 

particle number ⟨N⟩.

Our findings reveal intri- cate and compelling relationships among these concepts, providing new perspectives on the 
interplay between statistical mechanics and information theory.
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Introduction
The Fisher information measure (FIM) is a critical tool in both statistics and information theory, quantifying the amount 
of information an observable random variable carries about an unknown parameter. Fisher information has found 
applications across a wide range of disciplines, including statistical mechanics [1]. Statistical mechanics, in turn, provides 
a robust framework for understanding the macroscopic behavior of systems through their microscopic properties. 
Among the fundamental ensembles in this field are the canonical and grand canonical ensem- bles. The canonical 
ensemble is well-suited for systems with a fixed number of particles, volume, and temperature, while the grand canonical 
ensemble accommodates fluctuations in particle numbers by incorporating the chemical potential or fugacity as essential 
parameters [2].

Another key statistical measure is the Fano factor, defined as the ratio of the variance to the mean of a counting process. 
It applies only to counting processes in the context of counting statistics and noise characterization, offering insights 
into the fluctuations within a system. The Fano factor is widely used in applications such as photon detection, particle 
counting, and any scenario where quantifying variability is crucial [3]. Additionally, Poisson distributions, characterized 
by their mean and the number of events or particles, apply to processes where events occur independently at a 
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constant average rate. These distributions play a pivotal role in various applications, from modeling radioactive decay to 
describing traffic flow and network packet arrivals [2, 4, 5].

In this study, we delve into the intricate relationships among four statistical concepts: 
• The canonical and grand canonical ensembles.
• Fisher information measures (both continuous and discrete) for parameters such as inverse temperature β, particle 

number, and fugacity.
• The Fano factor.
• Poisson distributions defined by particle number and their average. 

Through this exploration, we aim to uncover deeper insights into the interplay between thermodynamic quantities and 
statistical measures. Mandelbrot demonstrated that the Fisher information measure for the parameter β in the canonical 
ensemble is equivalent to the energy variance [6]. In this work, we derive a similar result for the grand canonical 
ensemble (GCE) and construct a special Poisson distribution to bridge the gap between these ensembles. From this 
foundation, we further investigate the informational content of both the canonical and grand canonical ensembles.

We emphasize the following points: 
• The Fisher information measure, a concept from information theory, quantifies the in- formation a statistical model 

provides about a parameter based on observations. For a probability distribution P(x, θ) dependent on a parameter 
θ, Fisher information is given by the expectation of the squared derivative of the logarithm of P with respect to θ, 
with the expectation taken over P.

• In statistical mechanics, the GCE describes a system in thermal equilibrium with a reservoir, allowing for the 
exchange of both energy and particles. The mean energy U in this ensemble is a critical quantity that characterizes 
the system’s average (or mean) energy.

Our exploration of the Fisher information and its connection to the grand canonical ensemble is particularly compelling 
for several reasons:
• This connection contributes to the expanding field of information thermodynamics, which investigates the interplay 

be- tween information theory and thermodynamics.
• It may have implications for understanding quantum fluctuations and information measures in quantum statistical 

ensem- bles.
• Fisher information is tied to the precision with which a parameter can be estimated. In the context of the grand 

canon- ical and canonical ensembles this connection could provide insights into the precision of measurements and 
the role of fluctuations within the system.

We begin our investigation by reviewing the formal mathematical structures underlying the GCE. 

The article is organized as follows: Sections II to V are of an introductory nature providing the necessary preliminary 
materials for tackling our task. Section V builds a new link between a discrete Fisher measure (FM) and a special 
Poisson distribution F associated with the grand canonical ensemble (GCE). Section VI presents special results involving 
the Fisher measure I constructed with the GCE probability distribution (PD). Section VII is devoted to exploring links 
between the FMs F and I for the ideal gas. Section VIII specializes in the ideal gas links between distinct Fisher 
measures. Section IX investigates uncertainty relations for the ideal gas in a Fisher environment. Finally, Section X 
concludes with a summary of our findings and their implications.

Structural Framework
Generalities About the Grand Canonical Ensemble
The grand canonical ensemble describes a general system in contact with a reservoir with which it can exchange energy 
and particles, so that the number of particles is not fixed. Let us suppose a classical system of N noninteracting identical 
particles in equilibrium at a temperature T and confined to a volume V. The classical Hamiltonian H (x, p) is in general, 
a function of the coordinates of the 6N phase space variables denoted by momentum p and coordinate x, i.e., (x, p). 
The well-known resulting normalized probability distribution of the system is given by [2]. 

The parameter β is defined as β = 1/kBT where kB is Boltzmann’s constant. The symbol z = exp(α), with α =β μ, 
represents the fugacity of the system, and μ is the chemical potential. The quantity Z ≡ Z (β , z) =        zNQN(β ) denotes 
the grand partition function where the range of N is 0 ≤ N < ∞ [2]. The well-known classical canonical partition 
function for this system is given by [2].
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Where dΩ = d3Nxd3N p/N!h3N is the element of volume of the phase space made up of elementary cells, with a volume of 
approximately hN, where h is the Planck constant.

The average particle number in the grand canonical ensemble is given by [2].

while the mean energy is [2]

which can be derived from

Where we used the following expression for the mean value of energy ⟨ H ⟩can in the canonical ensemble [2].

Also, we have that

and

The mean-square fluctuations in the energy U = ⟨ H ⟩ of a system in the grand canonical ensemble (of mean-particle 
value ∂ ⟨N⟩) are given by [2].

Which is equal to the fluctuation in the canonical ensemble plus a contribution due to the fact that the particle number 
N fluctuates. Such contribution is given by ⟨(ΔN)2⟩ = ⟨N⟩, a general result [2]. We note that the mean value ⟨. . .⟩ to the 
right of Eq. (9) is taken in the grand canonical ensemble. Hereafter, on some occasions, when necessary, we will refer 
to this fact using the notation ⟨. . .⟩GCE.

The Classical Ideal Gas in the Grand Canonical Ensemble: Some Concepts
Now, we specify the classical Hamiltonian as H (p) =       / (2m), with m being the mass of the particles, and pi 
representing the momentum of the i-th particle in the system [2]. The resulting canonical partition function is of the 
form [2].

Where λ = (2πh2/mkBT)1/2 is the particles’ mean thermal wavelength. Therefore, the grand canonical partition function 
becomes [2].

We emphasize an important issue here. The key GCE variable in this ensemble is the chemical potential μ, which plays 
a crucial role in controlling the average number of particles in the system. The mean particle number is related to the 
grand partition function of course. The grand partition function is a function of temperature, volume, and chemical 
potential (through z). Therefore, the mean particle number must depend on such variables. After some manipulation 
one encounters [2]:
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where we used the following expression for the mean value of energy ⟨H ⟩can in the canonical ensemble [2]
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The mean-square fluctuations in the energy U = ⟨H ⟩ of a system in the grand canonical ensemble (of mean-particle value
∂ ⟨N⟩) are given by [2]

⟨(∆U)2⟩= ⟨(∆U)2⟩can +

(
∂U

∂ ⟨N⟩

)2

T,V
⟨(∆N)2⟩, (9)

which is equal to the fluctuation in the canonical ensemble plus a contribution due to the fact that the particle number N fluctuates.
Such contribution is given by ⟨(∆N)2⟩= ⟨N⟩, a general result [2].

We note that the mean value ⟨. . .⟩ to the right of Eq. (9) is taken in the grand canonical ensemble. Hereafter, on some occasions
when necessary, we will refer to this fact using the notation ⟨. . .⟩GCE .

B. The classical ideal gas in the grand canonical ensemble: some concepts

Now, we specify the classical Hamiltonian as H (p) = ∑N
i=1 p2

i /(2m), with m being the mass of the particles, and pi repre-
senting the momentum of the i-th particle in the system [2]. The resulting canonical partition function is of the form [2]

QN(β ) =
1

N!

(
V
λ 3

)N

, (10)

where λ = (2π h̄2/mkBT )1/2 is the particles’ mean thermal wavelength. Therefore, the grand canonical partition function be-
comes [2]

Z = exp
(

zV
λ 3

)
. (11)

We emphasize an important issue here. The key GCE variable in this ensemble is the chemical potential µ , which plays
a crucial role in controlling the average number of particles in the system. The mean particle number is related to the grand
partition function of course. The grand partition function is a function of temperature, volume, and chemical potential (through
z). Therefore, the mean particle number must depend on such variables. After some manipulation one encounters [2]:

⟨N⟩= zV
λ 3 = lnZ , (12)

while the mean energy is [2]

⟨H ⟩= 3zV
2βλ 3 =

3
2
⟨N⟩kBT, (13)

which are two relevant quantities for the development of the next sections.
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We emphasize an important issue here. The key GCE variable in this ensemble is the chemical potential µ , which plays
a crucial role in controlling the average number of particles in the system. The mean particle number is related to the grand
partition function of course. The grand partition function is a function of temperature, volume, and chemical potential (through
z). Therefore, the mean particle number must depend on such variables. After some manipulation one encounters [2]:

⟨N⟩= zV
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while the mean energy is [2]
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which are two relevant quantities for the development of the next sections.

The GCE Probability Distribution and Its “Cousin” Special Poisson Distribution
Preliminaries
Consider the grand canonical ensemble (GCE) probability distribution (PD) of the mean particle number ⟨N⟩. We will see 
that it makes a lot of sense to study the features of a related, special Poisson distribution that possess the same ⟨N⟩, 
which we can refer to as the GCE’s “cousin” PD. Studying these features will yield valuable insights, particularly in the 
context of statistical mechanics, information theory, and related fields. Here are some reasons why this investigation 
could be meaningful: 
• By fixing the mean value ⟨N⟩, you are imposing an external constraint on the system. This could represent a situation 

where an external factor, such as a reservoir or a controlling mechanism, dictates the average number of events or 
particles. Studying how this constraint affects the distribution and related properties can provide valuable insight.

• In thermodynamics, particularly within the framework of the grand canonical ensemble, the parameter ⟨N⟩corresponds 
to a quantity that controls the average number of particles. By fixing ⟨N⟩, one can explore the consequences for 
energy fluctuations, entropy, and other thermodynamic quantities. This would directly affect the variance and 
higher moments of the distribution. This could lead to interesting results about the relationship between the mean, 
variance, and the information content of the system.

• Fisher Information and Uncertainty: As mentioned earlier, Fisher information quantifies the amount of information 
about a parameter carried by a probability distribution. By fixing ⟨N⟩, you could explore how this affects the Fisher 
information and the uncertainty in the system, potentially revealing new relationships between information theory 
and statistical mechanics.

• Entropic Measures: Studying the entropy and related measures of the Poisson distribution with a fixed mean could 
also yield insights into the information-theoretic properties of the system.

Our Application
The special GCE-cousin Poisson distribution mentioned above will be the tool to build the bridge we desire. Poisson’s 
distribution (see details below) is important in physics and various other fields due to its ability to model the probability 
of a given number of events occurring in a fixed interval of time or space when these events happen independently and 
at a constant average rate [2]. Its applications in physics and other sciences are widespread, and here are some areas 
where it is particularly relevant: particle and nuclear physics, particle counting, traffic flows, economics and finance, 
biophysics, etc. Its simplicity and generality make it a valuable tool in physics and other scientific disciplines.

Choice of Variables
A discrete random variable X (representing a discrete number of occurrences k) is said to have a Poisson distribution 
with a positive parameter λ > 0 if it has a probability mass function given by [4, 5].

An essential fact for us is to derive a special GCE-cousin Poisson distribution [2, 4, 5]. For this we take λ to be the mean 
number of particles ⟨N⟩, but not just any mean value rather the one given in the grand canonical ensemble, expressed 
in terms of the temperature. The other Poisson parameter k is the actual particle number N.

Therefore, our special GCE-cousin Poisson distribution PN refers to the probability of encountering N particles when 
we have ⟨N⟩ as a function of T, i.e., ⟨N⟩(T). We will denote the Fisher measure associated with the GCE probability 
distribution as I and the Fisher measure associated with the GCE-cousin Poisson distribution as F.

The Workings of the Ensuing GCE-Cousin Poisson Distributions
According to the explanation in the above subsection, the standard Poisson distribution is given by

Here, ⟨N⟩ represents the average number of particles as determined by the mathematics of the grand canonical ensemble. 
This is an important fact that should be emphasized and remembered. 

A Poisson distribution is used to describe the number of events that occur in a fixed interval of time or space when the 
events occur independently at a constant rate. It is often used to model situations where events are rare and random, 
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We emphasize an important issue here. The key GCE variable in this ensemble is the chemical potential µ , which plays
a crucial role in controlling the average number of particles in the system. The mean particle number is related to the grand
partition function of course. The grand partition function is a function of temperature, volume, and chemical potential (through
z). Therefore, the mean particle number must depend on such variables. After some manipulation one encounters [2]:
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III. THE GCE PROBABILITY DISTRIBUTION AND ITS “COUSIN” SPECIAL POISSON DISTRIBUTION

A. Preliminaries

Consider the grand canonical ensemble (GCE) probability distribution (PD) of the mean particle number ⟨N⟩. We will see that
it makes a lot of sense to study the features of a related, special Poisson distribution that possess the same ⟨N⟩, which we can
refer to as the GCE’s “cousin” PD. Studying these features will yield valuable insights, particularly in the context of statistical
mechanics, information theory, and related fields. Here are some reasons why this investigation could be meaningful:

1. By fixing the mean value ⟨N⟩, you are imposing an external constraint on the system. This could represent a situation
where an external factor, such as a reservoir or a controlling mechanism, dictates the average number of events or particles.
Studying how this constraint affects the distribution and related properties can provide valuable insight.

2. In thermodynamics, particularly within the framework of the grand canonical ensemble, the parameter ⟨N⟩ corresponds
to a quantity that controls the average number of particles. By fixing ⟨N⟩, one can explore the consequences for energy
fluctuations, entropy, and other thermodynamic quantities. This would directly affect the variance and higher moments
of the distribution. This could lead to interesting results about the relationship between the mean, variance, and the
information content of the system.

3. 1) Fisher Information and Uncertainty: As mentioned earlier, Fisher information quantifies the amount of information
about a parameter carried by a probability distribution. By fixing ⟨N⟩, you could explore how this affects the Fisher
information and the uncertainty in the system, potentially revealing new relationships between information theory and
statistical mechanics.
2) Entropic Measures: Studying the entropy and related measures of the Poisson distribution with a fixed mean could also
yield insights into the information-theoretic properties of the system.

B. Our application

The special GCE-cousin Poisson distribution mentioned above will be the tool to build the bridge we desire. Poisson’s
distribution (see details below) is important in physics and various other fields due to its ability to model the probability of a
given number of events occurring in a fixed interval of time or space when these events happen independently and at a constant
average rate [2]. Its applications in physics and other sciences are widespread, and here are some areas where it is particularly
relevant: particle and nuclear physics, particle counting, traffic flows, economics and finance, biophysics, etc. Its simplicity and
generality make it a valuable tool in physics and other scientific disciplines.

1. Choice of Variables

A discrete random variable X (representing a discrete number of occurrences k) is said to have a Poisson distribution with a
positive parameter λ > 0 if it has a probability mass function given by [4, 5]

P(X = k) =
λ ke−λ

k!
. (14)

An essential fact for us is to derive a special GCE-cousin Poisson distribution [2, 4, 5]. For this we take λ to be the mean
number of particles ⟨N⟩, but not just any mean value rather the one given in the grand canonical ensemble, expressed in
terms of the temperature. The other Poisson parameter k is the actual particle number N.

Therefore, our special GCE-cousin Poisson distribution PN refers to the probability of encountering N particles when we have
⟨N⟩ as a function of T , i.e., ⟨N⟩(T ).

We will denote the Fisher measure associated with the GCE probability distribution as I and the Fisher measure
associated with the GCE-cousin Poisson distribution as F .

2. The workings of the ensuing GCE-cousin Poisson distributions

According to the explanation in the above subsection, the standard Poisson distribution is given by
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PN =
⟨N⟩Ne−⟨N⟩

N!
, 0 ≤ N < ∞. (15)

Here, ⟨N⟩ represents the average number of particles as determined by the mathematics of the grand canonical ensemble. This
is an important fact that should be emphasized and remembered.

A Poisson distribution is used to describe the number of events that occur in a fixed interval of time or space when the events
occur independently at a constant rate. It is often used to model situations where events are rare and random, such as radioactive
decay or the arrival of particles at a detector. In the context of the grand canonical ensemble, the specially GCE-cousin Poisson
distribution can arise as a result of the probabilistic nature of particle number fluctuations. Specifically, in the grand canonical
ensemble the average particle number is not fixed but rather fluctuates around a mean value determined by the chemical potential
of the reservoir [2].

When the fluctuations in the particle number are relatively small and the average particle number is large, the grand canonical
distribution of particle numbers can be well approximated by the Poisson distribution (PoD) [2]. This occurs because the spe-
cially GCE-cousin Poisson distribution naturally arises as a limit of the binomial distribution when the number of trials (particle
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∞

∑
N=0

PN = 1. (16)

2. The expected value of N is fixed beforehand as that given by the grand canonical ensemble and, of course, obeys

⟨N⟩=
∞

∑
N=0

PNN. (17)

3. The variance of N behaves in rather peculiar fashion

(∆N)2 = ⟨N2⟩−⟨N⟩2 = ⟨N⟩, (18)

where

⟨N2⟩=
∞

∑
N=0

PNN2 = ⟨N⟩+ ⟨N⟩2. (19)

IV. FANO FACTOR

A well-known useful quantity is the scaled variance or Fano factor, which is an intensive measure of fluctuations [7]. It is
defined as [2]
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It is evident that for the specially GCE-cousin Poisson distribution, we have ω = 1. For a ω < 1 Fano factor one speaks of
a sub-specially GCE-cousin Poisson instance and for a ω > 1, one speaks of a super-specially GCE-cousin Poisson instance.
It is also easily seen that for the ideal gas in the GCE the Fano factor equals unity. The fact that the Fano factor equals unity
for an ideal gas, indicating Poissonian statistics in particle counting, is a well-known result in statistical mechanics and particle
physics. It has been understood for quite some time, as it is a fundamental aspect of the ideal gas model [7]. The ideal gas model
assumes that gas particles are point-like, non-interacting entities that move randomly and independently in a container. These
assumptions lead to the statistical properties of the gas following certain well-defined distributions, with the Poisson distribution
being particularly relevant for particle counting statistics. The relationship between the Fano factor and the Poisson distribution
in the context of an ideal gas has been extensively studied and utilized in various areas of physics, including in experimental
particle physics, where it helps characterize the behavior of detectors and the statistical fluctuations in particle detection [8].

V. RECALLING ASPECTS OF THE FISHER-ENVIRONMENT

Fisher’s information (FIM) measures how much information a random sample of data contains about an unknown parame-
ter [9]. It is a measure of the amount of uncertainty or variability in the data with respect to the parameter being estimated.
The Fisher information matrix is often used to quantify this information. Mathematically, if you have a probability distribution
f (x;θ) for some parameter θ , the Fisher information I(θ) is given by the expected value of the square of the score function,
which is the derivative of the log-likelihood function with respect to the parameter [9]. It is defined as

I(θ) =
∫

dx f (x;θ)
(

∂ ln f (x;θ)
∂θ

)2

. (21)

In the case of the discrete probability distributions gi, with i = 1,2, . . ., we have [10, 11]

Iθ =
∞

∑
i=1

(∂θ gi)
2

gi
, (22)

where one uses the abbreviated notation ∂θ gi = ∂gi/∂θ . Interesting applications of the discrete Fisher can be found in Refs. [10–
12].

The Fisher information measure also has several important properties [9]:

1. Information accumulation: It quantifies how much information about a parameter is accumulated by collecting more data.

2. Cramér-Rao Inequality: The Fisher information is related to the precision of parameter estimation. The Cramér-Rao
inequality states that the variance of any unbiased estimator is bounded by the inverse of the Fisher information [9]:
∆θ ≥ 1/I(θ).

3. Efficiency of estimators: It helps compare different estimators for efficiency, with more efficient estimators having higher
Fisher information.

4. In summary, Fisher information is a fundamental concept in statistics that provides a quantitative measure of the amount
of information contained in a sample of data about the parameters of a statistical model. FIM plays a crucial role in the
theory of statistical estimation and hypothesis testing.

We begin to develop our new contributions here.

VI. BUILDING A NEW LINK BETWEEN A DISCRETE FIM AND A GCE-COUSIN POISSON DISTRIBUTION

We begin at this point to develop our vision regarding an energy-information connection between the grand canonical and the
canonical ensembles. The relation between Fisher’s information and the specially GCE-cousin Poisson distribution is essential
in the search for such a link.
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Building a New Link Between a Discrete Fim and a Gce-Cousin Poisson Distribution
We begin at this point to develop our vision regarding an energy-information connection between the grand canonical 
and the canonical ensembles. The relation between Fisher’s information and the specially GCE-cousin Poisson distribution 
is essential in the search for such a link. In this section, we apply the discrete Fisher information defined in Eq. (22) to 
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For the Poisson distribution PN given by Eq. (15), we can derive the following relation: ∂θ PN = PN(N/⟨N⟩−1) ∂θ ⟨N⟩. 
Therefore, we have for the Fisher information measure F associated with the specially GCE-cousin Poisson distribution 
the Expression

which, by using Eqs. (16), (17), and (18), is equal to

Since for the Poisson distribution ⟨(∆N)2⟩ = ⟨N⟩, thus Fθ finally becomes

We will next consider several scenarios devised according to the Fisher-parameter θ under consideration.

Discrete Poisson-Fisher Information F and the β-Parameter
The discrete Fisher information for the special GCE-cousin Poisson distribution of the β parameter, denoted as Fβ, is 
given by
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In this section, we apply the discrete Fisher information defined in Eq. (22) to the Poisson distribution (15), which is given by

Fθ =
∞

∑
i=1

(∂θ PN)
2

PN
. (23)

For the Poisson distribution PN given by Eq. (15), we can derive the following relation: ∂θ PN = PN(N/⟨N⟩ − 1)∂θ ⟨N⟩.
Therefore, we have for the Fisher information measure F associated with the specially GCE-cousin Poisson distribution the
expression

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2 ∞

∑
N=0

PN(N2 −2N⟨N⟩+ ⟨N⟩2), (24)

which, by using Eqs. (16), (17), and (18), is equal to

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2

⟨(∆N)2⟩. (25)

Since for the Poisson distribution ⟨(∆N)2⟩= ⟨N⟩, thus Fθ finally becomes

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
. (26)

�� !��� ��"� �������� �� ��� �������� �� ���� �������� �� ��� �������������� θ ����� �������������

1. Discrete Poisson-Fisher information F and the β -parameter

The discrete Fisher information for the special GCE-cousin Poisson distribution of the β parameter, denoted as Fβ , is given
by

Fβ =

(
∂β ⟨N⟩

)2

⟨N⟩
. (27)

where we replace the parameter θ by β in Eq. (26).

2. Discrete Poisson-Fisher information F and the θ -parameter

The discrete Fisher information for the specially GCE-cousin Poisson distribution of the θ parameter, denoted as Fθ , is given
by

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
, (28)

where we refer to θ in Eq. (26).

3. Discrete Poisson Fisher information F with parameter ⟨N⟩

Please remember that the mean value N is denoted as ⟨N⟩. We work with Poisson distributions whose mean value of particles
is fixed from outside by the GCE. On the other hand, the discrete Fisher information for the ⟨N⟩-parameter of the specially GCE-
cousin Poisson distribution PN , denoted by F⟨N⟩, is given by Also, recall that we denote I as the Fisher measure associated
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where we replace the parameter θ by β in Eq. (26).

Discrete Poisson-Fisher Information F and the θ-Parameter
The discrete Fisher information for the specially GCE-cousin Poisson distribution of the θ parameter, denoted as Fθ , is 
given by

where we refer to θ in Eq. (26).

Discrete Poisson Fisher Information F with Parameter ⟨N⟩
Please remember that the mean value N is denoted as ⟨N⟩. We work with Poisson distributions whose mean value of 
particles is fixed from outside by the GCE. On the other hand, the discrete Fisher information for the ⟨N⟩-parameter of 
the specially GCE- cousin Poisson distribution PN, denoted by F⟨N⟩, is given by Also, recall that we denote I as the Fisher 
measure associated with the GCE probability distribution and instead call F the Fisher measure associated with the GCE-
cousin Poisson distribution. Then,

Where we replace the parameter θ by ⟨N⟩ in Eq. (26) and consider that ∂⟨N⟩⟨N⟩ = 1.

Eq. (29) for F⟨N⟩ associates Fisher information with the inverse of the particle number. It is clear that augmenting the 
number of particles increases our ignorance.

In addition, connecting Eqs. (27) and (29) allows us to obtain

Indicating that there is a link between the two discrete Poisson-Fisher measures, one with parameter β and the other 
with parameter ⟨N⟩. Notice that, when ∂β⟨N⟩ = 0, then Fβ = 0. In general, ∂β ⟨N⟩ ≠ 0, as in the case of the ideal gas, for 
which ⟨N⟩ depends on β through Eq. (12). Similarly, joining Eqs. (28) and (29) we find that

a universal relation that connects the Poisson-Fisher (PF) value for any parameter to that for which the parameter is the 
mean particle number.

System-Independent Fim-Meanings in the Grand Canonical Environment
General Definition
Connections between Fisher’s measures and energy fluctuations are important in understanding the relationship between 
statistical physics and information theory. Fisher’s measures provide a way to quantify the amount of information in 
a system and how it changes over time. Energy fluctuations, on the other hand, are a key aspect of the behavior of 
physical systems and can be used to understand their thermodynamic properties. By studying the connections between 
Fisher’s measures and energy fluctuations, researchers can gain insights into the fundamental principles that govern 
the behavior of complex systems. This can lead to new developments in fields such as statistical mechanics, machine 
learning, and data analysis.

Given the grand canonical distribution (1), we generalize the phase-space (x, p) Fisher information (21) to the grand 
canonical ensemble as follows

Here, the parameter θ can be β, θ, or ⟨N⟩. We will study each case separately in detail.

Fisher Measure with β as the Parameter
Assuming the existence of a canonical distribution to describe the energy fluctuations of a system in contact with a heat 
bath at temperature β, given by ρcan(x, p) = exp(−β H )/QN(β), the canonical Fisher measure is [13].

where the superscript indicates that we are considering the distribution of the canonical ensemble. Performing the 
integral, one arrives at the Mandelbrot relation [14].

7

In this section, we apply the discrete Fisher information defined in Eq. (22) to the Poisson distribution (15), which is given by

Fθ =
∞

∑
i=1

(∂θ PN)
2

PN
. (23)

For the Poisson distribution PN given by Eq. (15), we can derive the following relation: ∂θ PN = PN(N/⟨N⟩ − 1)∂θ ⟨N⟩.
Therefore, we have for the Fisher information measure F associated with the specially GCE-cousin Poisson distribution the
expression

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2 ∞

∑
N=0

PN(N2 −2N⟨N⟩+ ⟨N⟩2), (24)

which, by using Eqs. (16), (17), and (18), is equal to

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2

⟨(∆N)2⟩. (25)

Since for the Poisson distribution ⟨(∆N)2⟩= ⟨N⟩, thus Fθ finally becomes

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
. (26)

�� !��� ��"� �������� �� ��� �������� �� ���� �������� �� ��� �������������� θ ����� �������������

1. Discrete Poisson-Fisher information F and the β -parameter

The discrete Fisher information for the special GCE-cousin Poisson distribution of the β parameter, denoted as Fβ , is given
by

Fβ =

(
∂β ⟨N⟩

)2

⟨N⟩
. (27)

where we replace the parameter θ by β in Eq. (26).

2. Discrete Poisson-Fisher information F and the θ -parameter

The discrete Fisher information for the specially GCE-cousin Poisson distribution of the θ parameter, denoted as Fθ , is given
by

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
, (28)

where we refer to θ in Eq. (26).

3. Discrete Poisson Fisher information F with parameter ⟨N⟩

Please remember that the mean value N is denoted as ⟨N⟩. We work with Poisson distributions whose mean value of particles
is fixed from outside by the GCE. On the other hand, the discrete Fisher information for the ⟨N⟩-parameter of the specially GCE-
cousin Poisson distribution PN , denoted by F⟨N⟩, is given by Also, recall that we denote I as the Fisher measure associated

7

In this section, we apply the discrete Fisher information defined in Eq. (22) to the Poisson distribution (15), which is given by

Fθ =
∞

∑
i=1

(∂θ PN)
2

PN
. (23)

For the Poisson distribution PN given by Eq. (15), we can derive the following relation: ∂θ PN = PN(N/⟨N⟩ − 1)∂θ ⟨N⟩.
Therefore, we have for the Fisher information measure F associated with the specially GCE-cousin Poisson distribution the
expression

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2 ∞

∑
N=0

PN(N2 −2N⟨N⟩+ ⟨N⟩2), (24)

which, by using Eqs. (16), (17), and (18), is equal to

Fθ =

(
∂θ ⟨N⟩
⟨N⟩

)2

⟨(∆N)2⟩. (25)

Since for the Poisson distribution ⟨(∆N)2⟩= ⟨N⟩, thus Fθ finally becomes

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
. (26)

�� !��� ��"� �������� �� ��� �������� �� ���� �������� �� ��� �������������� θ ����� �������������

1. Discrete Poisson-Fisher information F and the β -parameter

The discrete Fisher information for the special GCE-cousin Poisson distribution of the β parameter, denoted as Fβ , is given
by

Fβ =

(
∂β ⟨N⟩

)2

⟨N⟩
. (27)

where we replace the parameter θ by β in Eq. (26).

2. Discrete Poisson-Fisher information F and the θ -parameter

The discrete Fisher information for the specially GCE-cousin Poisson distribution of the θ parameter, denoted as Fθ , is given
by

Fθ =
(∂θ ⟨N⟩)2

⟨N⟩
, (28)

where we refer to θ in Eq. (26).

3. Discrete Poisson Fisher information F with parameter ⟨N⟩

Please remember that the mean value N is denoted as ⟨N⟩. We work with Poisson distributions whose mean value of particles
is fixed from outside by the GCE. On the other hand, the discrete Fisher information for the ⟨N⟩-parameter of the specially GCE-
cousin Poisson distribution PN , denoted by F⟨N⟩, is given by Also, recall that we denote I as the Fisher measure associated
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with the GCE probability distribution and instead call F the Fisher measure associated with the GCE-cousin Poisson
distribution. Then,

F⟨N⟩ =
1

⟨N⟩
, (29)

where we replace the parameter θ by ⟨N⟩ in Eq. (26) and consider that ∂⟨N⟩⟨N⟩= 1.
Eq. (29) for F⟨N⟩ �������� ������ ���������� !��� ��� �� ���� �� ��� ������� ������� It is clear that augmenting the

number of particles increases our ignorance.

In addition, connecting Eqs. (27) and (29) allows us to obtain

Fβ = (∂β ⟨N⟩)2 F⟨N⟩, (30)

indicating that there is a link between the two discrete Poisson-Fisher measures, one with parameter β and the other with
parameter ⟨N⟩. Notice that, when ∂β ⟨N⟩= 0, then Fβ = 0. In general, ∂β ⟨N⟩ ̸= 0, as in the case of the ideal gas, for which ⟨N⟩
depends on β through Eq. (12). Similarly, joining Eqs. (28) and (29) we find that

Fθ = (∂θ ⟨N⟩)2 F⟨N⟩, (31)

a universal relation that connects the Poisson-Fisher (PF) value for any parameter to that for which the parameter is the mean
particle number.

VII. SYSTEM-INDEPENDENT FIM-MEANINGS IN THE GRAND CANONICAL ENVIRONMENT

A. General Definition

Connections between Fisher’s measures and energy fluctuations are important in understanding the relationship between
statistical physics and information theory. Fisher’s measures provide a way to quantify the amount of information in a system
and how it changes over time. Energy fluctuations, on the other hand, are a key aspect of the behavior of physical systems and
can be used to understand their thermodynamic properties. By studying the connections between Fisher’s measures and energy
fluctuations, researchers can gain insights into the fundamental principles that govern the behavior of complex systems. This
can lead to new developments in fields such as statistical mechanics, machine learning, and data analysis.

Given the grand canonical distribution (1), we generalize the phase-space (x, p) Fisher information (21) to the grand canonical
ensemble as follows

Iθ =
∞

∑
N=0

∫
dΩρ(x, p)

(
∂ lnρ(x, p)

∂θ

)2

. (32)

	���� ��� ������� θ �� �� β � θ � �� ⟨N⟩� �� !��� ����# ��� ��� �������# �� ������

B. Fisher measure with β as the parameter

Assuming the existence of a canonical distribution to describe the energy fluctuations of a system in contact with a heat bath
at temperature β , given by ρcan(x, p) = exp(−βH )/QN(β ), the canonical Fisher measure is [13]

Ican
β =

∫
dΩρcan(x, p)

(
∂ lnρcan(x, p)

∂β

)2

, (33)

where the superscript indicates that we are considering the distribution of the canonical ensemble. Performing the integral, one
arrives at the Mandelbrot relation [14]

Ican
β = ⟨(∆U)2⟩can, (34)
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In addition, connecting Eqs. (27) and (29) allows us to obtain

Fβ = (∂β ⟨N⟩)2 F⟨N⟩, (30)

indicating that there is a link between the two discrete Poisson-Fisher measures, one with parameter β and the other with
parameter ⟨N⟩. Notice that, when ∂β ⟨N⟩= 0, then Fβ = 0. In general, ∂β ⟨N⟩ ̸= 0, as in the case of the ideal gas, for which ⟨N⟩
depends on β through Eq. (12). Similarly, joining Eqs. (28) and (29) we find that

Fθ = (∂θ ⟨N⟩)2 F⟨N⟩, (31)

a universal relation that connects the Poisson-Fisher (PF) value for any parameter to that for which the parameter is the mean
particle number.

VII. SYSTEM-INDEPENDENT FIM-MEANINGS IN THE GRAND CANONICAL ENVIRONMENT

A. General Definition

Connections between Fisher’s measures and energy fluctuations are important in understanding the relationship between
statistical physics and information theory. Fisher’s measures provide a way to quantify the amount of information in a system
and how it changes over time. Energy fluctuations, on the other hand, are a key aspect of the behavior of physical systems and
can be used to understand their thermodynamic properties. By studying the connections between Fisher’s measures and energy
fluctuations, researchers can gain insights into the fundamental principles that govern the behavior of complex systems. This
can lead to new developments in fields such as statistical mechanics, machine learning, and data analysis.

Given the grand canonical distribution (1), we generalize the phase-space (x, p) Fisher information (21) to the grand canonical
ensemble as follows
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B. Fisher measure with β as the parameter

Assuming the existence of a canonical distribution to describe the energy fluctuations of a system in contact with a heat bath
at temperature β , given by ρcan(x, p) = exp(−βH )/QN(β ), the canonical Fisher measure is [13]
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where the superscript indicates that we are considering the distribution of the canonical ensemble. Performing the integral, one
arrives at the Mandelbrot relation [14]

Ican
β = ⟨(∆U)2⟩can, (34)
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Which coincides with the energy fluctuations of the canonical ensemble [13].

To extend the Mandelbrot relation to the grand canonical ensemble, we use the general Fisher information measure 
(32) with θ = β, denoted by Iβ , as

Where the inverse temperature is the Fisher-parameter. The quantity ρ (x, p) is the general phase-space grand canonical 
distribu- tion given by Eq. (1). Fisher derivatives are taken at fixed z and V. From the definition (1) of ρ (x, p), we have

Accordingly,
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So that we reach our desired generalization of Mandelbrot’s canonical result to the grand canonical environment
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Fβ = (∂β ⟨N⟩)2 F⟨N⟩, (30)

indicating that there is a link between the two discrete Poisson-Fisher measures, one with parameter β and the other with
parameter ⟨N⟩. Notice that, when ∂β ⟨N⟩= 0, then Fβ = 0. In general, ∂β ⟨N⟩ ̸= 0, as in the case of the ideal gas, for which ⟨N⟩
depends on β through Eq. (12). Similarly, joining Eqs. (28) and (29) we find that

Fθ = (∂θ ⟨N⟩)2 F⟨N⟩, (31)

a universal relation that connects the Poisson-Fisher (PF) value for any parameter to that for which the parameter is the mean
particle number.
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which coincides with the energy fluctuations of the canonical ensemble [13].

To extend the Mandelbrot relation to the grand canonical ensemble, we use the general Fisher information measure (32) with
θ = β , denoted by Iβ , as

Iβ =
∞

∑
N=0

∫
dΩρ(x, p)

(
∂ lnρ(x, p)

∂β

)2

z,V
, (35)

where the inverse temperature is the Fisher-parameter. The quantity ρ(x, p) is the general phase-space grand canonical distribu-
tion given by Eq. (1). Fisher derivatives are taken at fixed z and V . From the definition (1) of ρ(x, p), we have

lnρ(x, p) =−βH (x, p)+N lnz− lnZ . (36)

Accordingly,

(
∂ lnρ(x, p)

∂β

)

z,V
=−H (x, p)−

(
∂ lnZ

∂β

)

z,V
, (37)

so that following Eq. (4) one finds

(
∂ lnρ(x, p)

∂β

)

z,V
=−H (x, p)+U, (38)

and then

Iβ =
∞

∑
N=0

∫
dΩρ(x, p)(−H (x, p)+U)2 =

=
∞

∑
N=0

∫
dΩρ(x, p)H 2(x, p)−2U

∞

∑
N=0

∫
dΩρ(x, p)H (x, p)+

+ U2
∞

∑
N=0

∫
dΩρ(x, p) = ⟨H 2⟩−2U2 +U2 = ⟨H 2⟩−U2 = ⟨(∆U)2⟩, (39)

so that we reach our desired generalization of Mandelbrot’s canonical result to the grand canonical environment

Iβ = ⟨(∆U)2⟩. (40)

As promised above, we now see that, by studying the connections between Fisher’s measures and energy fluctuations, we
arrive at an interesting insight, as in Ref. [13] for the canonical ensemble, and here for the grand canonical ensemble.
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The entire amount of accessible Iβ information regarding the system is contained in the energy fluctuations.

The above result is indeed in line with how Fisher information is often interpreted in the context of statistical mechanics.

In general, Fisher information can be seen as a measure of the amount of information that an observable random variable carries
about an unknown parameter. When this parameter is temperature T , the Fisher information measure is proportional to the
variance (or fluctuation) of the energy because the energy is the variable conjugate to temperature in the thermodynamic sense.

More broadly, if A is some thermodynamic parameter, then the Fisher information I(A) with respect to A is given by:

I(A) =

⟨(
∂ ln p(x;A)

∂A

)2
⟩

Here, p(x;A) is the probability distribution of some observable x that depends on A. In many cases, this Fisher information can
be related to the fluctuation (variance) of the variable conjugate to A.

For example, if A is temperature T , the conjugate variable is the energy E, and Fisher information is related to the energy
variance. However, if A is volume V , the conjugate variable is pressure P, and Fisher information would be related to the
fluctuation in pressure.

Thus, our above conjecture is correct: If the Fisher parameter is A, then the Fisher information measure is related to the fluc-
tuation of the thermodynamic variable conjugate to A. This relationship underlines the deep connection between statistical
mechanics and information theory.

The equivalence between Fisher’s information measure in the grand canonical (and canonical) ensembles on the one hand and
the energy fluctuations on the other constitutes a profound and significant result in statistical mechanics. Fisher’s information
quantifies the precision of parameter estimation, and in the context of our two ensembles it precisely captures the uncertainty in
estimating the inverse temperature, a key thermodynamic parameter. The fact that this information measure aligns exactly with
the energy fluctuation underscores a deep connection between statistical precision and the inherent variability of energy in the
system. This equivalence implies that as the precision of our knowledge about the system’s temperature increases, the energy
fluctuations become more constrained. In practical terms, this result provides valuable insights into the relationship between
information content and the thermodynamic behavior of a system, offering a bridge between the statistical and thermodynamic
perspectives. It also holds implications for experimental design, suggesting that enhancing precision in parameter estimation
is directly linked to a better understanding and control of energy fluctuations in the grand canonical ensemble. Overall, this
result sheds light on the intricate interplay between information theory and thermodynamics, deepening our comprehension of
the fundamental principles governing statistical mechanics.

C. Fisher measure with the fugacity α as the parameter

We evaluate the general GCE Fisher’s information measure I that has a parameter α , at fixed T and V . It reads

Iα =
∞

∑
N=0

∫
dΩρ(x, p)

(
∂ lnρ(x, p)

∂α

)2

T,V
. (41)

The derivation of Eq. (1) for ρ with respect to α allows us to obtain

∂ lnρ(x, p)
∂α

= N −⟨N⟩. (42)

Thus, in a similar fashion as above subsection, we get the interesting result

Iα = ⟨N⟩. (43)

D. Interpreting the above two Fisher meanings

1. The Fisher information measure with the inverse temperature as a parameter equals the energy variance. This well known
result (see, e.g., Uffink, Mandelbrot, ...) suggests a fundamental relationship between the statistical precision of the system
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Thus, in a similar fashion as above subsection, we get the interesting result

Interpreting the Above Two Fisher Meanings
• The Fisher information measure with the inverse temperature as a parameter equals the energy variance. This well-

known result (see, e.g., Uffink, Mandelbrot, ...) suggests a fundamental relationship between the statistical precision 
of the system (as measured by Fisher information) and its energy variance. Fisher information quantifies the amount 
of information a statistical model contains about a parameter of interest (in this case, the inverse temperature). The 
fact that it equals the energy variance implies that fluctuations in energy are intimately related to how precisely we 
can determine the inverse temperature of the system. Essentially, the more uncertain the energy, the less precise 
our knowledge of the temperature, and vice versa.

• The Fisher information measure with the fugacity as a parameter equals the mean particle number. Similarly, this 
finding indicates a connection between the statistical precision of the system and its mean particle number. The 
Fisher information, when calculated with the fugacity as the parameter, reflects how well we can estimate the 
fugacity based on observed data. Since fugacity is related to the chemical potential and hence the particle number, 
this result essentially says that the statistical precision of the system regarding its fugacity relates directly to how 
accurately we can determine the mean particle number.

In essence, both interpretations highlight the deep connections between statistical precision, thermodynamic quantities, 
and the parameters that govern the behavior of a system in the grand canonical ensemble. We will see below that if ⟨N⟩ 
is the Fisher parameter, no simple meaning becomes available.

Fisher Measure I with ⟨N⟩ as the Parameter
We now tackle an essential task and evaluate the general GCE Fisher’s information measure I that has ⟨N⟩ as a 
parameter, at a fixed T and V. It reads

From Eq. (1), we obtain the following derivative of ln ρ with respect to ⟨N⟩

Assuming that both z and Z depend on ⟨N⟩, we introduce Eq. (45) into Eq. (44) to find

This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be 
found below.
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(as measured by Fisher information) and its energy variance. Fisher information quantifies the amount of information a
statistical model contains about a parameter of interest (in this case, the inverse temperature). The fact that it equals the
energy variance implies that fluctuations in energy are intimately related to how precisely we can determine the inverse
temperature of the system. Essentially, the more uncertain the energy, the less precise our knowledge of the temperature,
and vice versa.

2. The Fisher information measure with the fugacity as a parameter equals the mean particle number. Similarly, this finding
indicates a connection between the statistical precision of the system and its mean particle number. The Fisher information,
when calculated with the fugacity as the parameter, reflects how well we can estimate the fugacity based on observed data.
Since fugacity is related to the chemical potential and hence the particle number, this result essentially says that the
statistical precision of the system regarding its fugacity relates directly to how accurately we can determine the mean
particle number.

In essence, both interpretations highlight the deep connections between statistical precision, thermodynamic quantities, and
the parameters that govern the behavior of a system in the grand canonical ensemble. We will see below that if ⟨N⟩ is the Fisher
parameter, no simple meaning becomes available.

E. Fisher measure I with ⟨N⟩ as the parameter

We now tackle an essential task and evaluate the general GCE Fisher’s information measure I that has ⟨N⟩ as a parameter, at
a fixed T and V . It reads

I⟨N⟩ =
∞

∑
N=0

∫
dΩρ(x, p)
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∂ lnρ(x, p)
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. (44)

From Eq. (1), we obtain the following derivative of lnρ with respect to ⟨N⟩

∂ lnρ(x, p)
∂ ⟨N⟩

=
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zN
∂

∂ ⟨N⟩

(
zN

Z

)
. (45)

Assuming that both z and Z depend on ⟨N⟩, we introduce Eq. (45) into Eq. (44) to find

I⟨N⟩ = Z
∞

∑
N=0

QN

zN

(
∂

∂ ⟨N⟩

(
zN

Z

))2

. (46)

This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
below.

VIII. SPECIALIZING TO THE IDEAL GAS LINKS BETWEEN DISTINCT FISHER MEASURES

A. Results for the different discrete Fisher measures

For the ideal gas we find the following results:

1. Connections for Fβ and Iβ

From Eq. (12), with z and V fixed, we obtain ∂β ⟨N⟩ = −3kBT ⟨N⟩/2. Taking into account that ∂β λ = kBT λ/2, the GCE-
cousin Poisson’s Eq. (27) transforms into the Fisher measure Fβ with the parameter being the inverse temperature associated
with Poisson’s distribution.
Let us emphasize that Fβ is a distinctive Fisher measure associated with a special Poisson distribution (PoD). The two variables
of this PoD are: 1) the number of particles N and 2) the average values ⟨N⟩ evaluated with the partition function of the grand
canonical ensemble.
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This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
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This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
below.
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This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
below.
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This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
below.
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This expression depends on the system under consideration. More details regarding the Fisher information I⟨N⟩ will be found
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Specializing to the Ideal Gas Links Between Distinct Fisher Measures
Results for the Different Discrete Fisher Measures
For the ideal gas we find the following results:

Connections for Fβ and Iβ
From Eq. (12), with z and V fixed, we obtain ∂β ⟨N⟩ = −3kBT ⟨N⟩/2. Taking into account that ∂β λ = kBT λ /2, the 
GCE- cousin Poisson’s Eq. (27) transforms into the Fisher measure Fβ with the parameter being the inverse temperature 
associated with Poisson’s distribution.

Let us emphasize that Fβ is a distinctive Fisher measure associated with a special Poisson distribution (PoD). The two 
variables of this PoD are: 1) the number of particles N and 2) the average values ⟨N⟩ evaluated with the partition 
function of the grand canonical ensemble. Our special Poisson-associated Fisher measure Fβ will play an important role 
below. Another Fisher measure Iβ associated with the grand canonical ensemble will also be used here, and we will 
compare Fs to I’s. Here, Fβ reads

We realize that the right-hand side above is just the mean ideal gas energy of an ideal gas, as determined using the 
specially GCE-cousin Poisson distribution. Thus, Fβ is ⟨N⟩ times the square of a single particle mean energy.

In the specific scenario of the ideal gas in the grand canonical ensemble, where U = ⟨H⟩ is determined by Eq. (13), we 
find that ∂U/∂⟨N⟩ = 3kBT/2. Based on the previous considerations, we conclude that, for the GCE-Poisson distribution, 
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Connections for F⟨N⟩ and I⟨N⟩
Interpreting this result involves considering its implications for the information content, statistical properties, sensitivity 
to variations, scaling behavior, and interplay with thermodynamics of systems with different mean particle numbers. It 
sheds light on the relationship between Fisher information and system size, offering valuable insights into the statistical 
mechanics of particle systems.

The relationship between Fisher information and the mean particle number provides insights into the scaling behavior 
of information content with system size. It suggests that as the system size increases, the information content per 
particle decreases according to an inverse scaling law. Understanding how information scales with system size is crucial 
for characterizing the complexity and behavior of systems across different scales. The inverse relationship suggests that 
systems with a smaller mean particle number exhibit greater sensitivity to variations in their statistical distributions. 
Changes in the distribution of particle numbers in such systems could lead to larger fluctuations in Fisher information 
compared to systems with a larger mean particle number. This sensitivity could be relevant for understanding phase 
transitions, critical phenomena, or fluctuations in small-scale systems. 

From Eqs. (45) and (11) at z and T fixed, we obtain

Now, introducing (54) into Eq. (44), after integrating and solving the sum, one has, when the Fisher parameter is now 
⟨N⟩,

where we have taken into account that

and

By comparing Eqs. (29) and (55), we find

Thus, the Fisher measures are obviously identical for both the specially GCE-cousin Poisson and grand canonical 
distributions, being inversely proportional to the average number of particles. This again highlights the strong connection 
between the specially GCE-cousin Poisson distribution and the physics of the ideal gas. All information available for the 
parameter ⟨N⟩ is already specially GCE-cousin Poisson-predetermined.

We see that the interpretation of the Fisher measure for the parameter θ depends on what this parameter stands for. 
If it is β , the Fisher measure is an energy variance; if it is N, the Fisher measure is the inverse of the mean number of 
particles; if it is α, the Fisher measure is the mean number of particles.

Thermodynamic Uncertainty Relation for the Ideal Gas
Preliminaries
Uffink et al. recall in that temperature and energy are complementary in a way somewhat reminiscent of the position- 
momentum link in quantum mechanics. They discuss the relation [13].

where kB is Boltzmann’s constant and the term ∆(1/T ) denotes temperature fluctuations. In other words, one has

where, as usual, β = 1/kBT.

Deriving a grand canonical counterpart
For a system in thermal contact with a heat bath at temperature T , in the canonical ensemble, we also have the 
canonical inequality (involving FIM) [13]
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1
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∞

∑
N=0

NzNQN = ⟨N⟩e⟨N⟩, (56)
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the Fisher measure is the mean number of particles.
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Now, introducing (54) into Eq. (44), after integrating and solving the sum, one has, when the Fisher parameter is now ⟨N⟩,

I⟨N⟩ =
1

⟨N⟩
, (55)

where we have taken into account that

∞

∑
N=0

NzNQN = ⟨N⟩e⟨N⟩, (56)

and

∞

∑
N=0

N2zNQN = ⟨N⟩(1+ ⟨N⟩)e⟨N⟩. (57)

By comparing Eqs. (29) and (55), we find

F⟨N⟩ = I⟨N⟩ =
1

⟨N⟩
. (58)
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∆U∆
(

1
T

)
≥ kB, (59)

where kB is Boltzmann’s constant and the term ∆(1/T ) denotes temperature fluctuations. In other words, one has

∆U∆β ≥ 1, (60)

where, as usual, β = 1/kBT .

B. Deriving a grand canonical counterpart

For a system in thermal contact with a heat bath at temperature T , in the canonical ensemble, we also have the canonical
inequality (involving FIM) [13]

Ican
β ∆β ≥ 1, (61)

where Ican
β is the Fisher information given by Eq. (40) and ∆β = ∆(1/T )/kB.

Using Eq. (51) one can derive the link with the grand canonical Fisher measure I

Ican
β = Iβ −Fβ . (62)

Substituting this into inequality (61), we get the result

Iβ ∆β ≥ 1+Fβ ∆β , (63)

which can also be expressed as

(Iβ −Fβ )∆β ≥ 1. (64)

We observe complementarity between the difference I −F and the fluctuation in the inverse temperature when the parameter is
β .

X. CONCLUSIONS

In this study, we investigated the intricate relationships among three fundamental concepts: i) Fisher’s information mea-
sure (FIM) I for three parameters: inverse temperature β , mean particle number ⟨N⟩, and the parameter α related to fugacity, ii)
the specially GCE-cousin Poisson distribution, whose Fisher-measure was called F and iii) the grand canonical ensemble (GCE).
We used two key Fisher quantifiers: F , the Fisher measure associated with the specially GCE-cousin Poisson distribution, and I,
its grand canonical counterpart. Some of our relationships are system-independent. We emphasize among them Eqs. (31),
(35), (39), (40), and (43). Other interesting relations refer to the ideal gas only.

Fisher information is widely used to quantify uncertainty or variability in a statistical model. We discussed its connection to
energy variance, offering an alternative means of quantifying uncertainty in physical systems. This connection holds potential
applications across physics, engineering, and other scientific fields where managing uncertainty is critical. It contributes to a
deeper understanding of how information is encoded in physical systems and its relationship to fundamental system properties.

Key findings of our study include:

1. Direct Relationship Between F and I: We discovered a direct link between these quantities, connecting the specially
GCE-cousin Poisson distribution to the physics of the ideal gas.

2. Inverse Relationship with Particle Number: We established that the Fisher measure becomes inversely related to the
particle number for the parameters β and ⟨N⟩. As the mean particle number increases, the Fisher information decreases.
The fact that the Fisher information decreases as the mean particle number in a gas increases can be interpreted in several
ways.
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Where       is the Fisher information given by Eq. (40) and ∆β = ∆(1/T)/kB.
Using Eq. (51) one can derive the link with the grand canonical Fisher measure I

Substituting this into inequality (61), we get the result
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We observe complementarity between the difference I − F and the fluctuation in the inverse temperature when the 
parameter is β.

Conclusions
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ensemble (GCE). We used two key Fisher quantifiers: F, the Fisher measure associated with the specially GCE-cousin 
Poisson distribution, and I, its grand canonical counterpart. Some of our relationships are system-independent. We 
emphasize among them Eqs. (31), (35), (39), (40), and (43). Other interesting relations refer to the ideal gas only.

Fisher information is widely used to quantify uncertainty or variability in a statistical model. We discussed its connection 
to energy variance, offering an alternative means of quantifying uncertainty in physical systems. This connection holds 
potential applications across physics, engineering, and other scientific fields where managing uncertainty is critical. 
It contributes to a deeper understanding of how information is encoded in physical systems and its relationship to 
fundamental system properties.

Key Findings of Our Study Include:
• Direct Relationship Between F and I: We discovered a direct link between these quantities, connecting the specially 

GCE-cousin Poisson distribution to the physics of the ideal gas.
• Inverse Relationship with Particle Number: We established that the Fisher measure becomes inversely related to 

the particle number for the parameters β and ⟨N⟩. As the mean particle number increases, the Fisher information 
decreases. The fact that the Fisher information decreases as the mean particle number in a gas increase can be 
interpreted in several ways.

• All the information yielded by Iβ is contained in the energy fluctuations.
• For the ideal gas, the difference between the β-Fisher information measures corresponding to the grand canonical 

and canonical ensembles is exactly our special Poisson-Fisher measure Fβ.

Additional comments include:
• Reduced sensitivity to parameter changes: Fisher information is a measure of how sensitive a probability distribution 

is to changes in a parameter. In the context of a gas, this parameter could be something like the inverse temperature, 
the chemical potential, or the fugacity. As the mean particle number increases, the system becomes larger, and 
individual fluc- tuations in the particle number or energy become less significant relative to the overall size of the 
system. Consequently, the system’s statistical properties (e.g., energy distribution) become less sensitive to changes 
in these parameters.

• A decrease in Fisher information implies that, in larger systems with more particles, small changes in the parameter 
of interest (e.g., temperature) have a smaller effect on the distribution of particle numbers or energy. This suggests 
that the system’s overall behavior becomes more stable and less prone to noticeable fluctuations as it grows.

• Law of large numbers: As the number of particles increases, the system’s behavior increasingly conforms to average 
values, a consequence of the law of large numbers. In large systems, the relative fluctuations around the mean 
values (such as mean energy or mean particle number) diminish.

• With a large number of particles, the distribution of properties like energy or particle number becomes narrower, 
meaning there’s less variability in the system. This decreased variability translates to lower Fisher information 
because the system’s response to parameter changes becomes more uniform and predictable.

• Information content and precision: Fisher information is directly related to the precision with which a parameter can 
be estimated. In smaller systems, fluctuations are more pronounced, and the parameter (like temperature) plays a 
more critical role in determining the system’s state. As the system grows, the relative impact of these fluctuations 
diminishes, leading to a decrease in the information content.

• In a larger system, the reduction in Fisher information indicates that the system’s parameters are estimated with 
lower precision, not because of increased noise, but because the system’s response to those parameters becomes 
more averaged out and less sensitive.
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(35), (39), (40), and (43). Other interesting relations refer to the ideal gas only.

Fisher information is widely used to quantify uncertainty or variability in a statistical model. We discussed its connection to
energy variance, offering an alternative means of quantifying uncertainty in physical systems. This connection holds potential
applications across physics, engineering, and other scientific fields where managing uncertainty is critical. It contributes to a
deeper understanding of how information is encoded in physical systems and its relationship to fundamental system properties.

Key findings of our study include:

1. Direct Relationship Between F and I: We discovered a direct link between these quantities, connecting the specially
GCE-cousin Poisson distribution to the physics of the ideal gas.

2. Inverse Relationship with Particle Number: We established that the Fisher measure becomes inversely related to the
particle number for the parameters β and ⟨N⟩. As the mean particle number increases, the Fisher information decreases.
The fact that the Fisher information decreases as the mean particle number in a gas increases can be interpreted in several
ways.
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where kB is Boltzmann’s constant and the term ∆(1/T ) denotes temperature fluctuations. In other words, one has

∆U∆β ≥ 1, (60)

where, as usual, β = 1/kBT .

B. Deriving a grand canonical counterpart

For a system in thermal contact with a heat bath at temperature T , in the canonical ensemble, we also have the canonical
inequality (involving FIM) [13]

Ican
β ∆β ≥ 1, (61)

where Ican
β is the Fisher information given by Eq. (40) and ∆β = ∆(1/T )/kB.

Using Eq. (51) one can derive the link with the grand canonical Fisher measure I

Ican
β = Iβ −Fβ . (62)

Substituting this into inequality (61), we get the result

Iβ ∆β ≥ 1+Fβ ∆β , (63)

which can also be expressed as

(Iβ −Fβ )∆β ≥ 1. (64)

We observe complementarity between the difference I −F and the fluctuation in the inverse temperature when the parameter is
β .
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(35), (39), (40), and (43). Other interesting relations refer to the ideal gas only.

Fisher information is widely used to quantify uncertainty or variability in a statistical model. We discussed its connection to
energy variance, offering an alternative means of quantifying uncertainty in physical systems. This connection holds potential
applications across physics, engineering, and other scientific fields where managing uncertainty is critical. It contributes to a
deeper understanding of how information is encoded in physical systems and its relationship to fundamental system properties.

Key findings of our study include:

1. Direct Relationship Between F and I: We discovered a direct link between these quantities, connecting the specially
GCE-cousin Poisson distribution to the physics of the ideal gas.
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• In thermodynamics, large systems tend to be more stable because fluctuations become negligible relative to the 
system’s size. This stability is reflected in the lower Fisher information, which indicates that large systems are less 
affected by small changes in external conditions (e.g., temperature, pressure).

• Scaling with system size: Fisher information might scale inversely with the system size (or particle number) because 
the system’s extensive properties (like total energy) become less sensitive to intensive parameters as the system 
size increases. This scaling behavior suggests that, for large systems, the collective behavior is dominated by 
mean values, and the details of individual particles become less important, leading to a natural decrease in Fisher 
information.

Further considerations
Regarding the relationship between FIM and particle number, we observed that FIM is a measure of the precision or 
amount of information contained in a statistical distribution. Its inverse relationship with the mean particle number 
suggests that as the number of particles increases, the precision or uncertainty in the system decreases. This insight 
could have implications for understanding systems with varying particle numbers, indicating a trade-off between the 
availability of resources (particle number) and the system’s ability to encode information about its state.

One of the most profound results of our study is the equivalence between Fisher’s information measure in the grand 
canonical (and canonical) ensemble and energy fluctuations. This result highlights a deep connection between statistical 
precision and the inherent variability of energy in the system. As the precision of our knowledge about the system’s 
temperature increases, energy fluctuations become more constrained. This insight bridges the gap between statistical and 
thermodynamic perspectives, offering valuable implications for experimental design and enhancing our understanding 
and control of energy fluctuations in the grand canonical ensemble.

The fact that in both the canonical and grand canonical ensembles, the Fisher information measure is determined by 
energy fluctuations underscores a profound connection between a system’s statistical properties and the information it 
carries about its parameters. This relationship suggests several broader conclusions:
• Universality: The consistent relationship between energy fluctuations and Fisher information across different 

ensembles suggests a fundamental role for energy fluctuations in determining a system’s information content.
• Information content of energy: The Fisher information measure, as it characterizes the amount of information a 

probability distribution carries about an unknown parameter, indicates that energy fluctuations contain essential 
information about system parameters.

• Efficient estimation: Since Fisher information is determined by energy fluctuations, energy-related measurements 
are particularly efficient for estimating system parameters within statistical mechanics.

• Physical interpretation: This result provides an intuitive understanding of Fisher information in the context of 
statistical mechanics, highlighting the importance of energy fluctuations as a statistical observable.

• Theoretical framework: The connection between Fisher information and energy fluctuations offers a theoretical 
framework for studying the information content of thermodynamic ensembles, which could be extended to more 
complex systems.

Grand Canonical Ensemble Interpretation
Finally, we emphasize the key interpretations of Fisher information in the grand canonical ensemble, which are 
independent of the specific system and deeply embedded in the structure of the ensemble:
• Inverse Temperature beta as a parameter: In the GCE, β determines the probabilities of different energy states 

through the Boltzmann factor. Energy variance, tied to the system’s temperature, reflects fluctuations in energy. 
Fisher information, when calculated with β as the parameter, measures the system’s sensitivity to changes in β, 
linking it to the precision of temperature estimation.

• Fugacity z as a parameter: Similarly, fugacity parameterizes the probability distribution of particle numbers in the 
GCE. Fisher information, when calculated with z as the parameter, measures the system’s sensitivity to changes in 
z, linking it to the precision of estimating the mean particle number.

These interpretations highlight the elegance and generality of the GCE, where statistical measures like Fisher information 
provide deep insights into the relationships between thermodynamic quantities and the parameters governing the 
ensemble’s behavior.
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