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Abstract 
Blood cancer can only be diagnosed properly if it is detected early. Each year, more than 1.24 million new cases 
of blood cancer are reported worldwide. There are about 6,000 cancers worldwide due to this disease. The 
importance of cancer detection and classification has prompted researchers to evaluate Deep Convolutional 
Neural Networks for the purpose of classifying blood cancers. The objective of this research is to conduct 
an in-depth investigation of the efficacy and suitability of modern Convolutional Neural Network (CNN) 
architectures for the detection and classification of blood malignancies. The study focuses on investigating 
the potential of Deep Convolutional Neural Networks (D-CNNs), comprising not only the foundational CNN 
models but also those improved through transfer learning methods and incorporated into ensemble strategies, 
to detect diverse forms of blood cancer with a high degree of accuracy. This paper provides a comprehensive 
investigation into five deep learning architectures derived from CNNs. These models, namely VGG19, 
ResNet152v2, SEresNet152, ResNet101, and DenseNet201, integrate ensemble learning techniques with 
transfer learning strategies. A comparison of DenseNet201 (98.08%), VGG19 (96.94%), and SEresNet152 
(90.93%) shows that DVS outperforms CNN. With transfer learning, DenseNet201 had 95.00% accuracy, 
VGG19 had 72.29%, and SEresNet152 had 94.16%. In the study, the ensemble DVS model achieved 98.76% 
accuracy. Based on our study, the ensemble DVS model is the best for detecting and classifying blood cancers. 
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Introduction 
According to the World Health Organization (WHO), blood cancer is one of the deadliest forms of cancer. The World 
Health Organization predicted that there would be about 4.5 million new cases of cancer and about 2.5 million deaths 
in the year 2022. When abnormal cells in the blood tissue grow out of control, they can turn into hematological cancers 
[1]. Blood cancer, a condition that affects both adults and children, presents one of the most challenging survival rates 
among diseases. The classification of different varieties of cancers may vary according to criteria including size, shape, 
and contrast, in addition to location, texture, and shape [2,3]. Therefore, using a CNN network to produce medical 
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images that satisfy certain requirements like size, shape, and contrast has potential benefits for improving cancer 
analysis [4]. Digital images of the patient’s blood, known as peripheral blood smears (PBS), are useful for the detection 
of blood cancers. Manual analysis takes time and is prone to errors due to the large amount of data and different blood 
cancer types [2]. PBS images are preferred for their non-invasiveness and ability to better highlight interior cancers [5]. 
Cancer sizes can be measured very precisely using peripheral blood smear (PBS) imaging. It offers insight into multiple 
types of blood cancers and can handle large datasets, which makes it a preferred method for blood cancer detection 
[5]. Despite using non-ionizing radiation, PBS produces images of a very high quality [6]. 
 
There have been recent efforts to identify and classify blood cancers by manually extracting features and detecting 
cancers, leading to time-consuming and inaccurate processes. For blood cancer to be extracted and diagnosed, automatic 
cancer detection is required [7]. Treatment of blood cancer begins with classification [3]. Automated classification is 
required to detect potentially fatal blood malignancies at an early stage. The adoption of three-dimensional CNNs has 
followed the rise of two-dimensional CNNs [8]. Another approach involves the use of D-CNN for detecting blood cancer. 
Blood cancer detection is a process known for its laborious nature and susceptibility to errors when utilizing medical 
images [5,9]. In this study, a Deep Convolutional Neural Network (D-CNN) is employed to analyze digital images for 
identifying and classifying blood cancers. In this study, a Deep Convolutional Neural Network (D-CNN) is used to analyze 
digital images in order to locate, segment, and categorize blood cancers. This study uses a diverse range of techniques, 
including CNNs, R-CNNs, ensemble methods, and transfer learning. A study of CNN architectures has been conducted 
using the VGG19, the ResNet152v2, the ResNet101, the SEresNet152, and the DenseNet201. When creating these 
CNNs, dimensions related to space, depth, and breadth are all considered. A variety of techniques are used to enhance 
the models, such as random search and hyperparameter optimization [10]. Previously, the study examined how deep 
CNNs can be used to analyze images and identify blood cancers [11]. The purpose of this study is to evaluate how 
effective these architectures are at identifying and classifying blood cancers. In order to classify blood cancers, CNN-
based architectures are utilized. These include VGG19, ResNet152v2, ResNet101, SEresNet152, and DenseNet201.   
 
In spite of the benefits of an ensemble model in a deep convolution neural network (D-CNN) to increase disease 
detection and classification accuracy, the ensemble technique has been infrequently applied to blood cancer. A method 
of deep learning known as ensemble learning combines a number of primary learners in a fusion strategy to enhance 
generalization capability. Deep learning using ensemble learning involves the integration of a large number of primary 
learners with fusion strategies to improve generalization [12]. As a decision-making method, ensemble learning 
combines multiple models to improve overall performance, encompassing classification and prediction, by exceeding 
the capabilities of each model. Using multiple models mitigates errors introduced by individual models, enhancing 
the results. In the domain of medical image analysis, specifically blood cancer research, Deep Convolutional Neural 
Network (D-CNN) ensemble models have drawn considerable interest. Considering D-CNNs’ promising capabilities, the 
utilization of ensemble models for tasks like identifying and categorizing blood cancer represents an interesting area for 
investigation [13]. 
 
The paper is organized with a literature review, experimental setup, experimental results, discussion, and conclusion. 
The results are published with the experimental description due to the inclusion of three experiments in this study. The 
five convolutional neural networks (CNNs) used in these studies were VGG19, ResNet152v2, ResNet101, SEresNet152, 
and DenseNet201. A transfer learning and ensemble model were also employed. 

Additionally, the paper includes an analysis of its shortcomings and potential areas for future research. 

Literature Review  
The literature review of the study is structurally divided into two main parts. The first part reviews several CNN variations. 
The second part covers the general use of CNN in blood malignancies detection and classification and the specificity of 
accuracy in identifying particular types of blood cancer utilizing CNN-based methods. This structured approach allows 
us to examine both the technical aspects of CNN architecture applications and their practical implications for detecting 
and classifying blood cancers. 

Original CNN Networks 
In the context of Convolutional Neural Networks (CNNs), it integrates two functions to form a third, essentially connecting 
two sources of data. To extract features from the input data, CNNs employ a convolutional layer, also known as a filter 
or kernel, which generates a feature map [14]. The layering system of a CNN is made up of an input layer, several 
convolutional layers, pooling layers, a fully connected layer, and an output layer, in addition to hidden layers. CNNs are 
suitable for tasks that require the analysis of complex input data with spatial structure, such as image recognition and 
object detection.  
 
DenseNet-201 is a 201-layer CNN that excels in image recognition. It uses a pre-trained model on a massive image 
database to identify objects in new images (224x224 pixels). Unlike traditional CNNs, DenseNet connects all its layers, 
improving feature reuse and reducing vanishing gradients (Figure 1).  
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Figure 1: Schematic Representation of DenseNet-201 Architecture [27] 

 
DenseNet's core function (D) combines convolutions, batch normalization (standardizes data) and ReLU 
(activates features) for efficient image processing. Image and kernel matrices are multiplied element-wise 
during convolution. 

Figure 1: Schematic Representation of DenseNet-201 Architecture [15]

DenseNet’s core function (D) combines convolutions, batch normalization (standardizes data) and ReLU (activates 
features) for efficient image processing. Image and kernel matrices are multiplied element-wise during convolution.

Densenet(I) = Dl ([I, k1, k2, . . ., k (n − 1)])              (1)

Where, I is the image and k1, k2, k(n-1) are the features of the first, second, and k(n-1) layers, respectively. Image spatial 
representation was obtained using Densenet 201 as the image feature encoder. The experiments employed 201-layer 
Densenet for the image model. Densenet received an image with dimensions of 224 × 224 × 3. This work’s Densenet 
last layer output was 2208. Dense Layer shrank features from 2208 to 128. Equation (2) determines the thick layer 
output (a−1).

a − 1 = Kd • Densenet(I)                                                                   (2)

Here, Kd is a kernel weights matrix having dimensions of 128 × 2208  
 
ResNet: Residual Networks (ResNets) effectively address the problem of disappearing gradients in deep neural networks 
by using skip connections [16,17]. This enables the utilization of far more complex models (with over 150 layers) for 
tasks involving image recognition, such as ResNet-50.  

A network built on many stacked residual units is called ResNet50. Remaining units are used in the network’s construction 
as its building blocks. These units consist of layers for convolution and pooling. This architecture accepts input images 
with a size of 224 × 224 pixels and employs 3 × 3 filters like in VGG16. 
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Densenet(I) =  Dl ([I, k1, k2, . . . , k(n − 1)])                                          (1) 
 
Where, I is the image and k1, k2, k(n-1) are the features of the first, second, and k(n-1) layers, respectively. Image 
spatial representation was obtained using Densenet 201 as the image feature encoder. The experiments 
employed 201-layer Densenet for the image model. Densenet received an image with dimensions of 224 × 224 
× 3. This work's Densenet last layer output was 2208. Dense Layer shrank features from 2208 to 128. Equation 
(2) determines the thick layer output (a−1). 
 

a − 1 =  Kd ·  Densenet(I)                                                                   (2) 
 
Here, Kd is a kernel weights matrix having dimensions of 128 × 2208  
 
ResNet: Residual Networks (ResNets) effectively address the problem of disappearing gradients in deep neural 
networks by using skip connections [19, 20]. This enables the utilization of far more complex models (with over 
150 layers) for tasks involving image recognition, such as ResNet-50.  
A network built on many stacked residual units is called ResNet50. Remaining units are used in the network's 
construction as its building blocks. These units consist of layers for convolution and pooling. This architecture 
accepts input images with a size of 224 × 224 pixels and employs 3 × 3 filters like in VGG16. 
 

 
 

Figure 2. Schematic representation of ResNet152V2 Architecture [22]. 
 

ResNet introduced the concept of residual learning, which involves adding shortcut connections that skip one or 
more layers in a neural network. These shortcut connections mitigate the issue of the vanishing gradient problem 
and facilitate the training of far deeper networks. The Residual Block is often composed of two primary pathways: 
the "identity pathway" and the "shortcut pathway". The identity path denotes the initial mapping that the stacked 
layers want to learn, whereas the shortcut path offers an alternative route for the gradient to directly propagate 
across the network, bypassing each individual layer (Figure 3). The key idea is that the residual block learns a 
residual function, which is the difference between the output and the input. 
 
 
 
 
 
 
 
 
 
 
    
 

Figure 2: Schematic Representation of ResNet152V2 Architecture [18]

ResNet introduced the concept of residual learning, which involves adding shortcut connections that skip one or more 
layers in a neural network. These shortcut connections mitigate the issue of the vanishing gradient problem and 
facilitate the training of far deeper networks. The Residual Block is often composed of two primary pathways: the 
“identity pathway” and the “shortcut pathway”. The identity path denotes the initial mapping that the stacked layers 
want to learn, whereas the shortcut path offers an alternative route for the gradient to directly propagate across the 
network, bypassing each individual layer (Figure 3). The key idea is that the residual block learns a residual function, 
which is the difference between the output and the input.

 
 
  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Residual Learning: a building block. 
 
 
The identity mapping is multiplied by a linear projection Q to expand the channels of shortcut to match the 
residual. This allows for the input x and F(x) to be combined as input to the next layer. 
 

y = F (x, {Qi}) + Qs . x                                  (3) 
 
 
VGG19: A variant of the VGG architecture with 19 layers facilitates the explicit and efficient transmission of 
spatial information among neurons within the same layer of a convolutional neural network (CNN). This 
approach demonstrates effectiveness particularly in scenarios where objects exhibit distinct shapes. The key 
advancement is a comprehensive analysis of networks with increasing depth using relatively small convolution 
filters while also capturing left/right and up/down features (Figure 4). There are also other 1x1 convolution 
filters that linearly modify the input before it is passed to the ReLU component. The convolution stride is fixed 
at 1 pixel to ensure that the spatial resolution is preserved after convolution [23]. 
 

 
 

Figure 4. Schematic representation of VGG19 model Architecture [24]. 
 
The formula to calculate the output size of each convolutional layer is [(P-Q)/R] + 1. 
Applying convolutions with various kernel sizes and a stride of 1. 
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Figure 3: Residual Learning: A Building Block

The identity mapping is multiplied by a linear projection Q to expand the channels of shortcut to match the residual. 
This allows for the input x and F(x) to be combined as input to the next layer.

y = F (x, {Qi}) + Qs . x                                  (3)

VGG19: A variant of the VGG architecture with 19 layers facilitates the explicit and efficient transmission of spatial 
information among neurons within the same layer of a convolutional neural network (CNN). This approach demonstrates 
effectiveness particularly in scenarios where objects exhibit distinct shapes. The key advancement is a comprehensive 
analysis of networks with increasing depth using relatively small convolution filters while also capturing left/right and up/
down features (Figure 4). There are also other 1x1 convolution filters that linearly modify the input before it is passed 
to the ReLU component. The convolution stride is fixed at 1 pixel to ensure that the spatial resolution is preserved after 
convolution [19].
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Figure 4: Schematic Representation of VGG19 Model Architecture [20]

The formula to calculate the output size of each convolutional layer is [(P-Q)/R] + 1. Applying convolutions with various 
kernel sizes and a stride of 1. 
 
Case-1: When we have a kernel size of 3 x 3 
	 •  After the First convolution 
P = 224, Q = 3, R = 1 
Output shape = [(P-Q)/R] + 1 = [(224–3)/1] + 1 = 222 
	 •  After the Second convolution 
P = 222, Q = 3, R = 1 
Output shape = [(P-Q)/R] + 1 = [(222–3)/1] + 1 = 220 
	 •  After the Third convolution 
P = 220, Q = 3, R = 1 
Output shape = [(P-Q)/R] + 1 = [(220–3)/1] + 1 = 218 
 
After three consecutive convolutions, we obtain an output size of 218 x 218 x K. 
 
Case-2: When we have a kernel size of 7 x 7 
 
P = 224, Q = 7, R = 1 
Output shape = [(P-Q)/R] + 1 = [(224–7)/1] + 1 = 218 
 
A single convolution yields 218 x 218 x K. In both circumstances, the three consecutive 3x3 convolution layers have a 
7x7 effective receptive field. 
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Table 1. Comparison of CNN architectures applied in this study 
 

Architecture 
Name 

Year  Main contribution Number of 
Parameters 

No of 
layer  

Reference 

VGG  2014  - Homogenous topology  

- Uses small size kernels  

138 M  19  Spatial 
Exploitation  

Squeeze & 
Excitation 
Networks 

 
2017 

- Models interdependencies 
between feature-maps 

 
27.5 M 

 
152 

 
[25] 

ResNet 2016 - Identity mapping-based skip 
connections 
- RL: residual learning 

25.6 M 
1.7 M 

152 
110 

[26] 

ResNeXt 2017 - Cardinality 
- Homogeneous topology 
- Grouped convolution 

68.1 M 29 - 101 [17] 

 
DenseNet 

 
2017 

 
- CLF: cross-layer information 
flow 

25.6 M 
25.6 M 
15.3 M 
15.3 M 

190 
190 
250 
250 

 
[25] 

 
In addition to its numerous architectures, CNN has also led to extensive research on transfer learning and the 
ensemble technique. The subsequent sections will delve into these CNN techniques. 

Transfer learning 

Transfer learning utilizes a pre-trained CNN, which is pretrained on a larger dataset, to expedite the training 
process. This method eliminates the need to train a CNN from scratch, which demands extensive labeled data 
and significant computational resources. Fine-tuning and function extraction are common techniques in transfer 
learning. Fine-tuning involves adjusting the weights of the pre-trained CNN, preserving certain levels while 
adapting others. Typically, early layers retain their weights, offering broad applicability, while later layers are 

Table 1: Comparison of CNN Architectures Applied in this Study
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In addition to its numerous architectures, CNN has also led to extensive research on transfer learning and the ensemble 
technique. The subsequent sections will delve into these CNN techniques. 

Transfer Learning 
Transfer learning utilizes a pre-trained CNN, which is pretrained on a larger dataset, to expedite the training process. 
This method eliminates the need to train a CNN from scratch, which demands extensive labeled data and significant 
computational resources. Fine-tuning and function extraction are common techniques in transfer learning. Fine-tuning 
involves adjusting the weights of the pre-trained CNN, preserving certain levels while adapting others. Typically, early 
layers retain their weights, offering broad applicability, while later layers are fine-tuned to adapt to specific datasets. 
Alternatively, CNN can serve as a function extractor, allowing access to encoded functions from any layer to guide a 
chosen classifier. 

Ensemble Technique 
Ensemble methods in the domain of Convolutional Neural Networks (CNN) entail the use of several classifiers, which 
have shown superior accuracy compared to strategies that use only a single classifier. Boosting, bagging, and stacking 
are widely used techniques for constructing ensembles. In these approaches, the outcomes of various basic learners 
are combined, often using a meta-learner algorithm, to generate final predictions. To achieve these predictions, the 
concept of a “super learner” is utilized, which entails optimizing a loss function by utilizing the cross-validated output of 
the learners to ascertain suitable weights for the base learners. An ensemble seeks to overcome the shortcomings of 
individual models and outperform any single participating model in terms of prediction and classification by combining 
numerous models.
 
Blood Cancer Literature Review 
Detection is the principal method utilized in the examination of blood malignancies using CNNs (Convolutional Neural 
Networks). The term “detection” pertains to the recognition of possible abnormalities within various tissue backgrounds. 
These techniques generally indicate a suspicious region on a mammography image. 
 
Application of Blood Cancer Detection Using CNN 
Khan et al. proposed a complex method for classifying four types of white blood cells (WBCs). Their model involved 
multiple steps, including pre-processing, segmentation, and feature extraction. The detection model performed well on 
2487 annotated blood smear images. The model distinguished the four WBC types with 98% accuracy [15]. 

Claro et al. introduced a convolutional neural network (CNN) architecture designed to differentiate between blood slides 
depicting acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), and healthy blood slides. The study 
utilized 16 datasets comprising a total of 2,415 photos. The proposed model was evaluated and achieved an accuracy 
of 97.18% and a precision of 97.23% [24]. 
 
Abir et al. emphasized the potential of computer-aided diagnostic models in accurately detecting early leukemia, reducing 
the burden on physicians and enhancing diagnostic precision. The study focused on acute lymphoblastic leukemia (ALL) 
and employed transfer learning models, including InceptionV3, achieving an accuracy of 98.38%. Comparisons with 
ResNet101V2 and VGG19 were also conducted [25]. Karar et al. suggested an intelligent IoMT framework to classify 
acute leukemias from microscopic blood images. The framework consists of three stages: wireless digital microscopy 
for blood sample collection, a cloud server utilizing a GAN classifier for automatic identification of blood conditions, and 
medical endorsement by a hematologist. GAN-based classifier performed very well on blood cell image datasets (ALL-
IDB & ASH), achieving 98.67% accuracy for ALL vs healthy and 95.5% accuracy for identifying ALL, AML, and normal 
cells. [26]. 
 
Sampathila et al. developed a CNN-based deep learning system to differentiate leukemic cells from normal blood cells. 
Their customized ALLNET model achieved impressive performance metrics, including a maximum accuracy of 95.54%, 
specificity of 95.81%, sensitivity of 95.91%, F1-score of 95.43%, and precision of 96%. [27]. A dual-stage CNN-based 
automated white blood cell differential counting system using bone marrow smear pictures was proposed by Choi et al. 
[28]. The model achieved a high accuracy of 97.06%, precision of 97.13%, recall of 97.1% and F-1 score. Training and 
testing were conducted using 2,174 patch images, and the method successfully classified images into 10 classes without 
the need for single cell segmentation [28]. Tusar et al. proposed utilizing deep neural networks (DNN) for automatic 
detection of acute lymphoblastic leukemia (ALL) blast cells in microscopic blood smear images, achieving a high 98% 
accuracy in detecting various ALL cell subtypes [29]. 
 
Jha et al. highlighted that leukemia (ALL) is a significant cause of global mortality, emphasizing the need for improved 
detection methods. They explored the potential of automated deep learning-based approaches for accurate identification. 
By utilizing ensemble learning on upgraded datasets, their proposed artificial neural network achieved error-free 
identification. With high-quality datasets, the approach achieved 100% accuracy and 96.3% accuracy even with lower-
quality data [30]. Parayil et al. conducted a study to develop an automation methodology based on feature fusion. 
They employed fusion algorithms utilizing transfer learning methods, including VGG16 and DenseNet201 for feature 
extraction. The classification results were evaluated using performance indicators such as Accuracy, Precision, Recall and 
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F1-Score. By combining feature fusion with a CNN classifier, they achieved a high accuracy of 89.75% [31]. 
 
Cheuque et al. introduced a two-stage hybrid multi-level system for categorizing lymphocytes, mononuclear monocytes, 
segmented neutrophils and eosinophils. It utilizes a Faster R-CNN network to differentiate between mononuclear and 
polymorphonuclear cells and identify the region of interest. Two parallel convolutional neural networks with the MobileNet 
architecture recognize the subcategories in the second stage. Monte Carlo crossvalidation showed a performance metric 
of approximately 98.4% (Accuracy, recall, precision, and F1-score) [32]. Rastogi et al. proposed a two-step approach 
for accurate leukocyte classification in leukemia diagnosis. They developed a fine-tuned feature-extractor model called 
“LeuFeatx,” based on VGG16, which effectively extracted important leukocyte characteristics from single-cell images. 
In binary classification on the ALL IDB2 dataset, LeuFeatx outperformed state-of-the-art techniques with a 96.15% 
accuracy [33]. 
 
Sneha et al. developed a deep CNN based on the Chronological Sine Cosine Algorithm (SCA) for malignancy detection 
in leukemia using blood smear images. Their hybrid model combines the Active Contour Model with the Fuzzy C-Means 
Algorithm for segmentation and analyzes segmented images for statistical and linguistic components. The proposed 
methodology achieved 81% accuracy in leukemia identification and performance was evaluated using precision, recall 
and F1 score [34]. Baig et al. proposed a model for detecting malignant leukemia cells in small blood smear images. 
They created a dataset of approximately 4150 images and addressed challenges such as background removal, noise 
reduction and image segmentation. Pre-processing techniques such as intensity adjustment and adaptive histogram 
equalization were applied. Binary image multiplication improved image structure and sharpness. Segmented images 
were obtained through operations to reduce background noise. Deep features were extracted using two trained CNN 
models and Canonical Correlation Analysis (CCA) fusion approach was used to combine the features. Classification 
algorithms including SVM, bagging ensemble, total boosts, RUSBoost and fine KNN were employed, with bagging 
ensemble achieving the highest accuracy of 97.04% [35]. 
 
Vogado et al. introduced LeukNet, a CNN designed for accurate leukocyte classification. Data augmentation techniques 
were applied to expand the training dataset and cross-validation achieved an accuracy of 98.61%. Cross-dataset 
validation showed that LeukNet outperformed state-of-the-art techniques with accuracy levels of 97.04%, 82.46% and 
70.24% on three different datasets [36]. Vo et al. propose a method using deep learning algorithms and microscopic 
blood smear images to automatically detect and classify malaria and acute lymphoblastic leukemia (ALL). The method 
consists of three stages: segmentation using a modified UNet model, classification using a convolutional neural network 
and data fusion using a perceptron model. The proposed approach achieves an overall accuracy of 93%, with a 95% 
detection rate for ALL and a 92% detection rate for malaria. This method offers a reliable and interpretable solution for 
detecting abnormal leukocytes in ALL and identifying malaria-infected blood cells [37].

Jha et al. highlighted that leukemia (ALL) is a significant cause of global mortality, emphasizing the need for 
improved detection methods. They explored the potential of automated deep learning-based approaches for 
accurate identification. By utilizing ensemble learning on upgraded datasets, their proposed artificial neural 
network achieved error-free identification. With high-quality datasets, the approach achieved 100% accuracy 
and 96.3% accuracy even with lower-quality data [34]. Parayil et al. conducted a study to develop an automation 
methodology based on feature fusion. They employed fusion algorithms utilizing transfer learning methods, 
including VGG16 and DenseNet201 for feature extraction. The classification results were evaluated using 
performance indicators such as Accuracy, Precision, Recall and F1-Score. By combining feature fusion with a 
CNN classifier, they achieved a high accuracy of 89.75% [35]. 
 
Cheuque et al. introduced a two-stage hybrid multi-level system for categorizing lymphocytes, mononuclear 
monocytes, segmented neutrophils and eosinophils. It utilizes a Faster R-CNN network to differentiate between 
mononuclear and polymorphonuclear cells and identify the region of interest. Two parallel convolutional neural 
networks with the MobileNet architecture recognize the subcategories in the second stage. Monte Carlo cross-
validation showed a performance metric of approximately 98.4% (Accuracy, recall, precision, and F1-score) 
[36]. Rastogi et al. proposed a two-step approach for accurate leukocyte classification in leukemia diagnosis. 
They developed a fine-tuned feature-extractor model called "LeuFeatx," based on VGG16, which effectively 
extracted important leukocyte characteristics from single-cell images. In binary classification on the ALL IDB2 
dataset, LeuFeatx outperformed state-of-the-art techniques with a 96.15% accuracy [37]. 
 
Sneha et al. developed a deep CNN based on the Chronological Sine Cosine Algorithm (SCA) for malignancy 
detection in leukemia using blood smear images. Their hybrid model combines the Active Contour Model with 
the Fuzzy C-Means Algorithm for segmentation and analyzes segmented images for statistical and linguistic 
components. The proposed methodology achieved 81% accuracy in leukemia identification and performance 
was evaluated using precision, recall and F1 score [38]. Baig et al. proposed a model for detecting malignant 
leukemia cells in small blood smear images. They created a dataset of approximately 4150 images and addressed 
challenges such as background removal, noise reduction and image segmentation. Pre-processing techniques 
such as intensity adjustment and adaptive histogram equalization were applied. Binary image multiplication 
improved image structure and sharpness. Segmented images were obtained through operations to reduce 
background noise. Deep features were extracted using two trained CNN models and Canonical Correlation 
Analysis (CCA) fusion approach was used to combine the features. Classification algorithms including SVM, 
bagging ensemble, total boosts, RUSBoost and fine KNN were employed, with bagging ensemble achieving 
the highest accuracy of 97.04% [39]. 
 
Vogado et al. introduced LeukNet, a CNN designed for accurate leukocyte classification. Data augmentation 
techniques were applied to expand the training dataset and cross-validation achieved an accuracy of 98.61%. 
Cross-dataset validation showed that LeukNet outperformed state-of-the-art techniques with accuracy levels of 
97.04%, 82.46% and 70.24% on three different datasets [40]. Vo et al. propose a method using deep learning 
algorithms and microscopic blood smear images to automatically detect and classify malaria and acute 
lymphoblastic leukemia (ALL). The method consists of three stages: segmentation using a modified UNet 
model, classification using a convolutional neural network and data fusion using a perceptron model. The 
proposed approach achieves an overall accuracy of 93%, with a 95% detection rate for ALL and a 92% detection 
rate for malaria. This method offers a reliable and interpretable solution for detecting abnormal leukocytes in 
ALL and identifying malaria-infected blood cells [41]. 
 

Table 2. Research Matrix 
 

Study Image type CNN model Accuracy 
[27] blood smear images convolutional neural network 98% 
[28] two leukemia types on 

blood slide images 
convolutional neural networks 97.18% 

[29] microscopic blood 
images 

transfer learning methods, including 
ResNet101V2 and VGG19. 

98.38% 

[30] microscopic blood 
images 

The developed GAN classifier 98.67% for binary 
classification and 
95.5% for multi-class 
classification 

[31]  microscopic images convolutional neural network 95.54% 
[32] variations in images dual-stage convolutional neural 

network (CNN). 
97.06% 

[33] microscopic blood 
smears images 

Deep Neural Networks 98% 

[34] augmented images Deep learning 96.3%  
[35]  convoluted neural networks, 

DenseNet201 and VGG16 
89.75% 

[36] blood smear images. convolutional neural networks with 
the MobileNet 

98.4% 

[37] microscopic single-cell 
leukocyte images 

VGG16 96.15% 

[38] blood smear images The segmentation process utilizes the 
Mutual Information (MI) method, 
along with the Active Contour Model 
and Fuzzy C-Means Algorithm 
(FCM). 

81%. 

[39] microscopic blood 
smear images 

Support Vector Machine (SVM), 
Bagging Ensemble, Total Boosts, 
RUSBoost, and Fine K-Nearest 
Neighbor (KNN) 

97.04%. 

[40] IoT based data The LeukNet is a convolutional 
neural network (CNN) model that 
was inspired by the convolutional 
blocks of VGG-16. 

98.61%. 

[41] microscopic images convolution neural network malaria-infected blood 
cells with a 93% 
overall accuracy 
including the detection 
rate for ALL of 95% 
and the detection rate 
for malaria of 92%. 

Knowledge gap in Blood Cancer Detection Using CNN 

The literature review presents two extensively employed deep learning algorithms, namely detection and 
segmentation, for identifying blood cancers. The principles of merging spatial and channel information, depth 
and width of architecture, and multi-path information processing have received substantial attention in the field 
of blood cancer research [42, 43]. 

Research Methodology 
The tests for this study were carried out on Google CoLab using the Keras library. One of the greatest Python 
deep learning tools for applying machine learning methods is TensorFlow. Each model was developed by 
Google, trained in the cloud using a Tesla graphics processing unit, and made available through the Google 
Collaboratory platform (GPU). The Collaboratory framework provides up to 12GB of RAM and around 360GB 
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95.5% for multi-class 
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[37] microscopic single-cell 
leukocyte images 

VGG16 96.15% 
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Mutual Information (MI) method, 
along with the Active Contour Model 
and Fuzzy C-Means Algorithm 
(FCM). 
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[39] microscopic blood 
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Support Vector Machine (SVM), 
Bagging Ensemble, Total Boosts, 
RUSBoost, and Fine K-Nearest 
Neighbor (KNN) 
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[40] IoT based data The LeukNet is a convolutional 
neural network (CNN) model that 
was inspired by the convolutional 
blocks of VGG-16. 

98.61%. 

[41] microscopic images convolution neural network malaria-infected blood 
cells with a 93% 
overall accuracy 
including the detection 
rate for ALL of 95% 
and the detection rate 
for malaria of 92%. 

Knowledge gap in Blood Cancer Detection Using CNN 

The literature review presents two extensively employed deep learning algorithms, namely detection and 
segmentation, for identifying blood cancers. The principles of merging spatial and channel information, depth 
and width of architecture, and multi-path information processing have received substantial attention in the field 
of blood cancer research [42, 43]. 

Research Methodology 
The tests for this study were carried out on Google CoLab using the Keras library. One of the greatest Python 
deep learning tools for applying machine learning methods is TensorFlow. Each model was developed by 
Google, trained in the cloud using a Tesla graphics processing unit, and made available through the Google 
Collaboratory platform (GPU). The Collaboratory framework provides up to 12GB of RAM and around 360GB 

Table 2: Research Matrix

Knowledge Gap in Blood Cancer Detection Using CNN 
The literature review presents two extensively employed deep learning algorithms, namely detection and segmentation, 
for identifying blood cancers. The principles of merging spatial and channel information, depth and width of architecture, 
and multi-path information processing have received substantial attention in the field of blood cancer research [38,39]. 

Research Methodology 
The tests for this study were carried out on Google CoLab using the Keras library. One of the greatest Python deep 
learning tools for applying machine learning methods is TensorFlow. Each model was developed by Google, trained in 
the cloud using a Tesla graphics processing unit, and made available through the Google Collaboratory platform (GPU). 
The Collaboratory framework provides up to 12GB of RAM and around 360GB of GPU in the cloud for research purposes. 
The original VGG19, ResNet152V2, SEresNet152, ResNext101, and DenseNet201 architectures were selected for blood 
cancer diagnosis in this work.  
 
Datasets  
The images of this dataset were collected from kaggle. This dataset consisted of 3235 peripheral blood smear (PBS) 
images. This dataset is divided into two classes benign and malignant. The former comprises hematogenous, and the 
latter is the ALL group with three subtypes of malignant lymphoblasts: Malignant Early Pre-B, Malignant Pre-B, and 
Malignant Pro-B ALL (Table 3). The photographs were all captured with a Zeiss camera at a 100x magnification under a 
microscope, and they were all saved as JPG files. The sample PBS image dataset is shown in Figure 5. 

of GPU in the cloud for research purposes. The original VGG19, ResNet152V2, SEresNet152, ResNext101, 
and DenseNet201 architectures were selected for blood cancer diagnosis in this work.  
 
Datasets  

The images of this dataset were collected from kaggle. This dataset consisted of 3235 peripheral blood smear 
(PBS) images. This dataset is divided into two classes benign and malignant. The former comprises 
hematogenous, and the latter is the ALL group with three subtypes of malignant lymphoblasts: Malignant Early 
Pre-B, Malignant Pre-B, and Malignant Pro-B ALL (Table 3). The photographs were all captured with a Zeiss 
camera at a 100x magnification under a microscope, and they were all saved as JPG files. The sample PBS 
image dataset is shown in Figure 5. 

Table 3. Distribution of peripheral blood smear (PBS) images used in the train, test and validation 
 No of Images Training images Validation images 

Benign 505 353 101 

[Malignant] Pro-B 796 557 159 

[Malignant] Pre-B 955 668 191 

[Malignant] early Pre-B 979 685 195 

Total 3235 2263 646 

  

 

Image of Benign 

 

Image of Malignant Early Pre-

B 

 

Image of Malignant Pre-B 

 

Image of Malignant Pro-B  

Figure 5. Example of 4 classes: Benign, Malignant Early Pre-B, Malignant Pre-B, and Malignant Pro-B. 

Process of experiments 

In this step, an image enhancement is utilized. The process of expanding an existing dataset by changing the 
original dataset to produce more new data while simultaneously maintaining the label of the new data is known 
as image augmentation [45]. The objective is to raise the data set's variance while ensuring that the new data 
are relevant and do not bloat the dataset with irrelevant data [45]. It can enhance model generalization, make 
trained models more robust to unseen data, and boost model accuracy when employed in a machine learning 
context [45]. 
In order to enhance the training data, we employed data augmentation techniques with specific objectives in 
mind. These techniques encompassed both positional improvements, such as scaling, cropping, flipping, and 
rotating, as well as color improvements, including adjustments to brightness, contrast, and saturation. The data 
augmentation process involved various transformations, such as random rotations within the range of -15 to 15 
degrees, rotations at multiples of 90 degrees, random distortion, shear transformation, vertical and horizontal 
flipping, skewing, and intensity transformation. Each original image was augmented in a diverse manner by 
randomly selecting a subset of these modifications. As a result, 10 augmented images were generated for each 
original image. To ensure consistency, the pixel values of both the original and augmented images used in this 

Table 3: Distribution of Peripheral Blood Smear (PBS) Images Used in the Train, Test and Validation
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of GPU in the cloud for research purposes. The original VGG19, ResNet152V2, SEresNet152, ResNext101, 
and DenseNet201 architectures were selected for blood cancer diagnosis in this work.  
 
Datasets  

The images of this dataset were collected from kaggle. This dataset consisted of 3235 peripheral blood smear 
(PBS) images. This dataset is divided into two classes benign and malignant. The former comprises 
hematogenous, and the latter is the ALL group with three subtypes of malignant lymphoblasts: Malignant Early 
Pre-B, Malignant Pre-B, and Malignant Pro-B ALL (Table 3). The photographs were all captured with a Zeiss 
camera at a 100x magnification under a microscope, and they were all saved as JPG files. The sample PBS 
image dataset is shown in Figure 5. 
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[Malignant] Pro-B 796 557 159 
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Figure 5. Example of 4 classes: Benign, Malignant Early Pre-B, Malignant Pre-B, and Malignant Pro-B. 

Process of experiments 

In this step, an image enhancement is utilized. The process of expanding an existing dataset by changing the 
original dataset to produce more new data while simultaneously maintaining the label of the new data is known 
as image augmentation [45]. The objective is to raise the data set's variance while ensuring that the new data 
are relevant and do not bloat the dataset with irrelevant data [45]. It can enhance model generalization, make 
trained models more robust to unseen data, and boost model accuracy when employed in a machine learning 
context [45]. 
In order to enhance the training data, we employed data augmentation techniques with specific objectives in 
mind. These techniques encompassed both positional improvements, such as scaling, cropping, flipping, and 
rotating, as well as color improvements, including adjustments to brightness, contrast, and saturation. The data 
augmentation process involved various transformations, such as random rotations within the range of -15 to 15 
degrees, rotations at multiples of 90 degrees, random distortion, shear transformation, vertical and horizontal 
flipping, skewing, and intensity transformation. Each original image was augmented in a diverse manner by 
randomly selecting a subset of these modifications. As a result, 10 augmented images were generated for each 
original image. To ensure consistency, the pixel values of both the original and augmented images used in this 

Figure 5: Example of 4 classes: Benign, Malignant Early Pre-B, Malignant Pre-B, and Malignant Pro-B.

Process of Experiments 
In this step, an image enhancement is utilized. The process of expanding an existing dataset by changing the original 
dataset to produce more new data while simultaneously maintaining the label of the new data is known as image 
augmentation [40]. The objective is to raise the data set’s variance while ensuring that the new data are relevant and do 
not bloat the dataset with irrelevant data [40]. It can enhance model generalization, make trained models more robust 
to unseen data, and boost model accuracy when employed in a machine learning context [40]. 

In order to enhance the training data, we employed data augmentation techniques with specific objectives in mind. These 
techniques encompassed both positional improvements, such as scaling, cropping, flipping, and rotating, as well as color 
improvements, including adjustments to brightness, contrast, and saturation. The data augmentation process involved 
various transformations, such as random rotations within the range of -15 to 15 degrees, rotations at multiples of 90 
degrees, random distortion, shear transformation, vertical and horizontal flipping, skewing, and intensity transformation. 
Each original image was augmented in a diverse manner by randomly selecting a subset of these modifications. As a 
result, 10 augmented images were generated for each original image. To ensure consistency, the pixel values of both 
the original and augmented images used in this study were normalized by dividing them by 255. Additionally, the images 
were resized to a standard size compatible with all the models used in our experiment. Adjustments to the input image 
resolutions of all models were made to ensure uniformity throughout the study. Steps of image augmentation of PBS 
blood cancer images is presented in Figure 6. 

Pre-processing algorithms, including Gaussian filter, LinearContrast, Median filter, and Contrast Enhancement, were 
applied to address specific objectives such as improving contrast, reducing pixel and channel noise, removing bias fields, 
adjusting image colors, and enhancing brightness [14].  

study were normalized by dividing them by 255. Additionally, the images were resized to a standard size 
compatible with all the models used in our experiment. Adjustments to the input image resolutions of all models 
were made to ensure uniformity throughout the study. Steps of image augmentation of PBS blood cancer images 
is presented in Figure 6. 
Pre-processing algorithms, including Gaussian filter, LinearContrast, Median filter, and Contrast Enhancement 
[14], were applied to address specific objectives such as improving contrast, reducing pixel and channel noise, 
removing bias fields, adjusting image colors, and enhancing brightness.  
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Figure 6. Results of image augmentation. 

Training 

A model was trained using the provided dataset utilizing the VGG19, ResNet152v2, DenseNet201, 
SEresNet152, and ResNext101 architectures, and its classification accuracy was then evaluated. Determining 
the optimal sizes of convolutional windows, number of layers, number of filters per layer, and other 
hyperparameters proved challenging in this study. Prior to deploying the CNN models in this investigation, we 
constructed three hyperparameter settings and performed evaluations. However, the ideal hyperparameters 
settings are as below: 
 
VGG19 was trained using Early Stopping callbacks for 25 epochs; ResNet152v2, SEresNet152 and ResNext101 
were trained using Early Stopping callbacks for 52 epochs and DenseNet201 was trained using Early Stopping 
callbacks for 18 epochs (iterations; patience = 10 iterations for all models). An Adam optimizer, Stochastic 
Gradient Descent (SGD) with momentum, and RMSProp were used to achieve quicker convergence (Root Mean 
Squared Propagation, or RMSProp, is an extension of gradient descent and the AdaGrad version of gradient 
descent that uses a decaying average of partial gradients in the adaptation of the step size for each parameter). 
The same combination was used to optimize all three models, and then they were all saved as.h5 files. While 
VGG19, ResNet152V2 and ResNext101 needed 43 s/epoch for model training, DenseNet201 and SEresNet152 
both needed 55 s/epoch (iterations). The dataset of the experiment did not contain any major imbalances; hence 
standard deviation was used in this study as a model performance indicator. Categorical cross entropy was 
selected as the loss function for every CNN architecture because this work focuses on multi-class categorization. 
The final layer of the CNN topologies utilized in this work used SoftMax as the activation function, while all 
intermediate layers used rely. There were 60 epochs, 0.1 dropout rate, 1e-4 learning rate and batch size of 16 as 
the hyperparameters employed.  
 
Classification: In this phase, the automatic detection of blood cancer diseases was conducted utilizing neural 
networks such as DenseNet121, ResNext101, ResNet152v2, ResNext101, and SEresNet152. Given its 
reputation as an effective classifier across numerous practical applications, the neural network was selected as 
the classification tool. The blood cell images were categorized into different disease classes using a softmax 
output layer after training the model. This model was specifically designed to identify blood cancer diseases 
based on the highest probability of occurrence. The experimental procedure is illustrated in Figure 7. 
 
 

 

Figure 6: Results of Image Augmentation

Training 
A model was trained using the provided dataset utilizing the VGG19, ResNet152v2, DenseNet201, SEresNet152, 
and ResNext101 architectures, and its classification accuracy was then evaluated. Determining the optimal sizes of 
convolutional windows, number of layers, number of filters per layer, and other hyperparameters proved challenging in 
this study. Prior to deploying the CNN models in this investigation, we constructed three hyperparameter settings and 
performed evaluations. However, the ideal hyperparameters settings are as below: 
 
VGG19 was trained using Early Stopping callbacks for 25 epochs; ResNet152v2, SEresNet152 and ResNext101 were 
trained using Early Stopping callbacks for 52 epochs and DenseNet201 was trained using Early Stopping callbacks for 18 
epochs (iterations; patience = 10 iterations for all models). An Adam optimizer, Stochastic Gradient Descent (SGD) with 
momentum, and RMSProp were used to achieve quicker convergence (Root Mean Squared Propagation, or RMSProp, is 
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an extension of gradient descent and the AdaGrad version of gradient descent that uses a decaying average of partial 
gradients in the adaptation of the step size for each parameter). The same combination was used to optimize all three 
models, and then they were all saved as.h5 files. While VGG19, ResNet152V2 and ResNext101 needed 43 s/epoch for 
model training, DenseNet201 and SEresNet152 both needed 55 s/epoch (iterations). The dataset of the experiment did 
not contain any major imbalances; hence standard deviation was used in this study as a model performance indicator. 
Categorical cross entropy was selected as the loss function for every CNN architecture because this work focuses on 
multi-class categorization. The final layer of the CNN topologies utilized in this work used SoftMax as the activation 
function, while all intermediate layers used rely. There were 60 epochs, 0.1 dropout rate, 1e-4 learning rate and batch 
size of 16 as the hyperparameters employed.  
 
Classification
In this phase, the automatic detection of blood cancer diseases was conducted utilizing neural networks such as 
DenseNet121, ResNext101, ResNet152v2, ResNext101, and SEresNet152. Given its reputation as an effective classifier 
across numerous practical applications, the neural network was selected as the classification tool. The blood cell images 
were categorized into different disease classes using a softmax output layer after training the model. This model was 
specifically designed to identify blood cancer diseases based on the highest probability of occurrence. The experimental 
procedure is illustrated in Figure 7.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Diagram of the experiment. 

Results of experiments 
The experiment findings are divided into three sections, focusing on the original individual network topologies, 
transfer learning, and ensemble methodologies. These sections aim to address the following research queries: 
 
1. Which original CNN network exhibits higher accuracy in detecting blood cancer? 
2. Does the utilization of transfer learning enhance accuracy in detecting blood cancer? 
3. Does the application of ensemble techniques improve the accuracy in detecting blood cancer?  
 
The effectiveness of such CNN base algorithms in a specific situation is measured using a variety of performance 
metrics for machine learning classification models. Considered are the performance indicators accuracy (AC), 
precision, recall, F1-score, and confusion matrix (CM). The variables true positive (TP), true negative (TN), false 
positive (FP), and false negative are also included in those measurements (FN). 

Training Parameters 
  
activation= SoftMax   
optimizers= Adam  
loss= 
categorical_crossentropy  
cooldown= 10 
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Figure 7: Diagram of the Experiment

Results of Experiments 
The experiment findings are divided into three sections, focusing on the original individual network topologies, transfer 
learning, and ensemble methodologies. These sections aim to address the following research queries: 
 
• Which original CNN network exhibits higher accuracy in detecting blood cancer? 
• Does the utilization of transfer learning enhance accuracy in detecting blood cancer? 
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• Does the application of ensemble techniques improve the accuracy in detecting blood cancer?  
 
The effectiveness of such CNN base algorithms in a specific situation is measured using a variety of performance metrics 
for machine learning classification models. Considered are the performance indicators accuracy (AC), precision, recall, 
F1-score, and confusion matrix (CM). The variables true positive (TP), true negative (TN), false positive (FP), and false 
negative are also included in those measurements (FN). 

Accuracy is one metric for measuring classification model performance. The percentage of accurate predictions the 
model makes is known as accuracy. Accuracy is defined in formal terms as the proportion of correctly classified images 
to all samples. Below is the accuracy equation:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 +  𝑇𝑁)    (4)

Precision is the probability assigned a positive label and the proportion of those labels that are genuinely positive. It is 
mathematically expressed in the following equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/ (𝑇𝑃 + 𝐹𝑃)      (5)

Recall is the accuracy of positive predicted instances reflecting how many were accurately labeled identified. Recall 
reveals the proportion of real positive cases that our model was able to properly anticipate. The F1 score is a metric used 
to evaluate the performance of a classification model. It considers both the precision and recall of the model to provide 
a single score that balances between them.  It is calculated using the following equation: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)   (6)
𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)  (7)

Specificity introduces what percentage of test results for those who do not have the disease are negative. A highly 
specific test is effective in excluding the majority of individuals without the disease. The equation is provided below:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  = 𝑇𝑁/ (𝑇𝑁 + 𝐹𝑃) (8)

The validation loss reveals how well a model fits the new data; the training loss reveals how well a model fits the training 
data.  

The confusion matrix (CM) is a particular table format that allows the performance evaluation of an algorithm. Confusion 
matrices are useful because they give direct comparisons of values like TP, FP, TN, and FN. Lastly, Support is the number 
of actual occurrences of the class in the specified dataset. Imbalanced support in the training data may indicate structural 
weaknesses in the reported scores of the classifier and could indicate the need for stratified sampling or rebalancing.  
 
The research questions of this study are addressed in the following parts based on the research questions. 

Experiment 1: Performance of the Original CNN and their Performance 
This section presents the results of the five original individual CNN networks VGG19, ResNet152v2, DenseNet201, 
SEresNet152, and ResNext101. First, the models’ categorization performance is shown. The final step is a discussion 
of the overall metrics for these models. Along with descriptions, areas for improvement in outcomes and contributing 
variables are gathered. 

Accuracy is one metric for measuring classification model performance. The percentage of accurate predictions 
the model makes is known as accuracy. Accuracy is defined in formal terms as the proportion of correctly classified 
images to all samples. Below is the accuracy equation:  

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇) (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇)⁄                 (4) 

 
Precision is the probability assigned a positive label and the proportion of those labels that are genuinely 
positive. It is mathematically expressed in the following equation:  
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄                                                      (5) 
 
Recall is the accuracy of positive predicted instances reflecting how many were accurately labeled identified. 
Recall reveals the proportion of real positive cases that our model was able to properly anticipate. The F1 score 
is a metric used to evaluate the performance of a classification model. It considers both the precision and recall 
of the model to provide a single score that balances between them.  It is calculated using the following equation:  

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄                                                               (6) 
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Specificity introduces what percentage of test results for those who do not have the disease are negative. A 
highly specific test is effective in excluding the majority of individuals without the disease. The equation is 
provided below: 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄                                                    (8) 
 
The validation loss reveals how well a model fits the new data; the training loss reveals how well a model fits 
the training data.  
The confusion matrix (CM) is a particular table format that allows the performance evaluation of an algorithm. 
Confusion matrices are useful because they give direct comparisons of values like TP, FP, TN, and FN. Lastly, 
Support is the number of actual occurrences of the class in the specified dataset. Imbalanced support in the 
training data may indicate structural weaknesses in the reported scores of the classifier and could indicate the 
need for stratified sampling or rebalancing.  
 
The research questions of this study are addressed in the following parts based on the research questions. 

Experiment 1: Performance of the original CNN and their performance 
This section presents the results of the five original individual CNN networks VGG19, ResNet152v2, 
DenseNet201, SEresNet152, and ResNext101. First, the models' categorization performance is shown. The final 
step is a discussion of the overall metrics for these models. Along with descriptions, areas for improvement in 
outcomes and contributing variables are gathered. 

Table 4. Training and model accuracy of five original CNN architectures. 

Architecture Training Accuracy Model Accuracy 

DenseNet201 99.65% 98.08% 

ResNet152v2 96.31% 96.99% 

SEresNet152 86.22% 90.93% 

ResNext101 85.27% 86.41% 

Vgg19 94.84% 96.94% 

Table 4: Training and Model Accuracy of Five Original CNN Architectures

The accuracies shown in the Table 4. where the percentage of samples that could be correctly identified to all samples 
was calculated. In term of training accuracy, the DenseNet201 have the highest value (99.65%), compared to the 
architectures known as SEresNet152, and ResNext101 which have the lowest (85.22%) accuracy.  On the other hand, 
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the model accuracy of DenseNet201 exhibits the highest percentage of 98.08% while ResNext101 has the lowest 
percentage of 86.41%. The remaining architectures exhibit the moderate model accuracy.

The accuracies shown in the Table 4. where the percentage of samples that could be correctly identified to all 
samples was calculated. In term of training accuracy, the DenseNet201 have the highest value (99.65%), 
compared to the architectures known as SEresNet152, and ResNext101 which have the lowest (85.22%) 
accuracy.  On the other hand, the model accuracy of DenseNet201 exhibits the highest percentage of 98.08% 
while ResNext101 has the lowest percentage of 86.41%. The remaining architectures exhibit the moderate 
model accuracy. 
 
Table 5. Precision, recall, f1, and support of five (5) result of original CNN networks (based on the number of 

images, n= numbers)  

VGG19 

 Benign Malignant Early Pre-B Malignant Pre-B Malignant Pro-B 

Precision 97% 94% 99% 98% 

Recall 88% 98% 98% 99% 

F1-score 93% 96% 99% 99% 

Support (N) 1672 3254 3198 2628 

Resnet152 V2 

Precision 96% 95% 98% 99% 

Recall 93% 97% 99% 100% 

F1-score 92% 95% 100% 100% 

Support (N) 1641 3255 3196 2630 

SEresNet152 

Precision 74% 93% 97% 93% 

Recall 81% 85% 95% 99% 

F1-score 77% 89% 96% 96% 

Support (N) 1671 3253     3200 2628 

ResNext101 

Precision 68% 88% 90% 94% 

Recall 80% 73% 98% 93% 

F1-score 74% 80% 94% 94% 

Support (N) 1658 3201 3164 2601 

DenseNet201 

Precision 95% 97% 100% 99% 

Recall 93% 98% 99% 100% 

F1-score 94% 97% 100% 100% 

 
Table 5 shows the Precision, Recall, F1-score, and Specificity acquired by the VGG19, ResNet152V2, 
SEresNet152, ResNext101 and DenseNet-201 models for each class. After computing precision values for each 
architecture on the test dataset, VGG19, DenseNet-201, and ResNet152V2 exhibit superior performance. 
Conversely, SEresNet152 and ResNext101 architectures demonstrate poorer performance, with the lowest 
identification rates. 
 

MN = Benign       NT = Malignant Early Pre-B      PT= Malignant Pre-B        GL = Malignant Pro-B 

VGG19 ResNet152v2 

 MN NT PT GL 

MN 1479 42 1 2 

NT 137 3196 62 3 

PT 9 6 3135 12 

GL 47 10 0 2611 
 

 MN NT PT GL 

MN 1522 38 12 16 

NT 129 3211 4 66 

PT 1 4 3181 29 

GL 19 0 2 2518 
 

SEresNet152 ResNext101 

 MN NT PT GL 

MN 1350 364 96 3 

NT 157 2781 63 0 

PT 15 66 3040 20 

GL 149 42 1 2605 
 

 MN NT PT GL 

MN 1333 564 22 46 

NT 192 2325 28 86 

PT 34 283 3099 44 

GL 99 29 15 2425 
 

DenseNet201 

Support (N) 1617 3255 3198 2629 

Table 5: Precision, Recall, f1, and Support of Five (5) Result of Original CNN Networks (based on the 
Number of Images, n= Numbers) 

Table 5 shows the Precision, Recall, F1-score, and Specificity acquired by the VGG19, ResNet152V2, SEresNet152, 
ResNext101 and DenseNet-201 models for each class. After computing precision values for each architecture on the 
test dataset, VGG19, DenseNet-201, and ResNet152V2 exhibit superior performance. Conversely, SEresNet152 and 
ResNext101 architectures demonstrate poorer performance, with the lowest identification rates.
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Figure 8. Confusion matrix of five original CNN. 
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Figure 9. Loss and accuracy curve of five original CNN. 

 
Figure 9.  explains loss and accuracy curve of five original CNNs. The graphs show above illustrate the training 
and validation accuracy of the original model where the x-axis indicates the number of epochs, and the y-axis 
indicates accuracy and loss percentage. The data for all CNN models also shows that as epoch increases, both 
train and validation loss decrease. As the epochs increase, the loss lines show little fluctuation however, it 
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Figure 9: Loss and Accuracy Curve of Five Original CNN

Figure 9.  explains loss and accuracy curve of five original CNNs. The graphs show above illustrate the training and 
validation accuracy of the original model where the x-axis indicates the number of epochs, and the y-axis indicates 
accuracy and loss percentage. The data for all CNN models also shows that as epoch increases, both train and validation 
loss decrease. As the epochs increase, the loss lines show little fluctuation however, it remains steady for further epochs. 
Moreover, there is no over-fitting, and the training as well as the validation data are precisely split up in the figure. The 
loss function assists the CNN to improve the architecture. The loss value determines how accurately or poorly a model 
performs following each optimized iteration. 

Experiment 2: Experimental Process and Result of Transfer Learning  
Five transfer learning CNN architectures’ which are DenseNet-201, ResNet152v2, SecrensNet152, VGG19 and 
ResNext101 displays the performance of CNN models in this section. In the test sets, DenseNet-201, ResNet152v2, and 
SecrensNet152 models performed well, but VGG19 and ResNext101 models performed poorly. 
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Table 6. Training and model accuracy of Transfer learning  
 

 
The test accuracies shown in Table 6 were calculated using the ratio of properly-identified samples to all 
samples. With a precision of 97 % the DenseNet201 model was the most accurate. But the DenseNet-201 
network's performance dropped from its original CNN accuracy of 98.08% to 95.00% after transfer learning. 

 
Table 7. Precision, Recall, F1, And Specificity Result of CNN Networks with Transfer Learning (N= 

Numbers) 

Architecture Training Accuracy Model Accuracy 
DenseNet201 92.57% 95.00% 
ResNet152v2 88.79% 90.89% 
SEresNet152 91.94% 94.16% 

Vgg19 75.05% 72.29% 
ResNext101 82.21% 75.44% 

VGG19 

 Benign Malignant Early Pre-B Malignant Pre-B Malignant Pro-B 

Precision 81% 64% 88% 72% 

Recall 25% 78% 94% 79% 

F1-score 38% 70% 91% 75% 

Support (N) 1672 3256 3196 2628 

Resnet152 V2 

Precision 87% 84% 90% 94% 

Recall 66% 90% 98% 90% 

F1-score 75% 87% 94% 92% 

Support (N) 1670 3253 3200 2629 

SEresNet152 

Precision 94% 87% 93% 96% 

Recall 70% 93% 100% 94% 
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value determines how accurately or poorly a model performs following each optimized iteration. 
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Table 6. Training and Model Accuracy of Transfer Learning 

The test accuracies shown in Table 6 were calculated using the ratio of properly-identified samples to all samples. With 
a precision of 97 % the DenseNet201 model was the most accurate. But the DenseNet-201 network’s performance 
dropped from its original CNN accuracy of 98.08% to 95.00% after transfer learning.
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remains steady for further epochs. Moreover, there is no over-fitting, and the training as well as the validation 
data are precisely split up in the figure. The loss function assists the CNN to improve the architecture. The loss 
value determines how accurately or poorly a model performs following each optimized iteration. 

Experiment 2: Experimental process and result of transfer learning  

Five transfer learning CNN architectures' which are DenseNet-201, ResNet152v2, SecrensNet152, VGG19 and 
ResNext101 displays the performance of CNN models in this section. In the test sets, DenseNet-201, 
ResNet152v2, and SecrensNet152 models performed well, but VGG19 and ResNext101 models performed 
poorly. 
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Support (N) 1670 3253 3200 2629 

SEresNet152 

Precision 94% 87% 93% 96% 

Recall 70% 93% 100% 94% 

 
The Precision, Recall, F1-score, and Specificity visualized from CNN networks incorporating transfer learning 
are shown in Table 7. A model is considered to be outstanding if it has high Precision, Recall, and Support. 
With a 64%, the trial results indicate that Vgg19 has a low precision in blood cancer. 
 
Experiment 3: Experimental process and result of Ensemble model 

 

 
 

Figure 10. Block diagram of Ensemble model 
 

In this study, three distinct original CNN models: DenseNet201, VGG19 and Serensnet152 make up the 
ensemble stack. To enhance the training process, we used a transfer learning approach but transfer learning 
performance was less expected. The output from those models was then delivered to a post-processing block 
with a layer that was completely related to it, a pass, and a final logits layer for classifying the image. All of the 
models were trained with Early Stopping (60 epochs) callbacks (patience = 10 epochs). The Adam optimizer, 
which combines SGD with momentum and RMSProp, was employed with the parameters learning rate to 
achieve faster convergence. The equivalent optimizer is applied to all three models, and the models are then 
saved as.h5 files. Each epoch of the DVS (DenseNet201, VGG19, SEresNet152) model training takes 68 
seconds. The following graph shows how the loss function was gradually added throughout the course of the 
epochs for all three models: DenseNet201, VGG19, and SEresNet152. 
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are shown in Table 7. A model is considered to be outstanding if it has high Precision, Recall, and Support. 
With a 64%, the trial results indicate that Vgg19 has a low precision in blood cancer. 
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Table 7: Precision, Recall, F1, And Specificity Result of CNN Networks with Transfer Learning (N= 
Numbers)

The Precision, Recall, F1-score, and Specificity visualized from CNN networks incorporating transfer learning are shown 
in Table 7. A model is considered to be outstanding if it has high Precision, Recall, and Support. With a 64%, the trial 
results indicate that Vgg19 has a low precision in blood cancer. 

Experiment 3: Experimental Process and Result of Ensemble Model 

Figure 10: Block Diagram of Ensemble Model

In this study, three distinct original CNN models: DenseNet201, VGG19 and Serensnet152 make up the ensemble stack. 
To enhance the training process, we used a transfer learning approach but transfer learning performance was less 
expected. The output from those models was then delivered to a post-processing block with a layer that was completely 
related to it, a pass, and a final logits layer for classifying the image. All of the models were trained with Early Stopping 
(60 epochs) callbacks (patience = 10 epochs). The Adam optimizer, which combines SGD with momentum and RMSProp, 
was employed with the parameters learning rate to achieve faster convergence. The equivalent optimizer is applied to all 
three models, and the models are then saved as.h5 files. Each epoch of the DVS (DenseNet201, VGG19, SEresNet152) 
model training takes 68 seconds. The following graph shows how the loss function was gradually added throughout the 
course of the epochs for all three models: DenseNet201, VGG19, and SEresNet152.
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Table 8. Training and model accuracy of Ensemble model DVS (DenseNet201, VGG19 and SEresNet152) 
 

Architecture Training Accuracy Model Accuracy 

DenseNet-201, VGG19 and  
SEresNet152 

97.44% 98.76% 

Table 9. Precision, Recall, F1-Score and Support of Ensemble model DVS 

 
According to the precision on ensemble, the algorithm achieved 99 % on Malignant Pro-B ALL, beating out 
transfer learning's 88% and the original CNN model's 97%. The meningioma accuracy of f1 score was the 
lowest of all. Table 9 displays the Precision, Recall, F1-Score and Specificity of the Ensemble model DVS when 
employing the ensemble. 
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Figure 12. Loss and Accuracy curve of Ensemble model DVS. 

Figure 12 illustrates the ensemble model's training accuracy and validation accuracy using data from 
Densenet121, VGG19, and SEresNet152. The number of epochs is shown on the x-axis, and the accuracy and 
loss percentages are shown on the y-axis. The Figure reveals that there is no over-fitting and that the training 
and validation data are divided appropriately. 
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and validation data are divided appropriately. 
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Discussions 

Figure 13: Accuracy Comparison Among Individual CNN and Transfer Learning

In this research, we performed an in-depth investigation of the performances of the D-CNN in detecting and classifying 
four kinds of images of blood cancer (Benign, Malignant Early Pre-B, Malignant Pre-B, and Malignant Pro-B).  Total 3235 
original images were used in this research. However, image augmentation was carried and eleven image were generated 
using augmentation from one image. For the blood cancer image detection, there implemented three models which 
are the original individual CNN, transfer learning and ensemble. We compared the results of five different CNN-based 
models of DenseNet201, VGG19, ResNext101, ResNet152v2 and SEresnet152 by applying them to the four classes of 
blood cancer (see Figure 12 for accuracy).  VGG19, DenseNet201, and ResNet152V2 are a few of the original individual 
networks that provide the best classification outcomes for diagnosing blood cancer. Additionally, DenseNet201 offers 
the maximum accuracy (98.08%) in the original CNN. Overall the ensemble DVS model done more performance than 
the original CNN. 

Three models— DenseNet201, VGG19, and Seresnet201 were utilized in the ensemble technique. With a 98.76% 
accuracy, the ensemble model outperformed the original CNN architecture (DenseNet201, VGG19 and Seresnet201). 
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Furthermore, it exhibits a 0.68% improvement compared to the original CNN architecture. As expected, our investigation 
revealed that the combination of deep learning models performed better than a single CNN architecture in terms of 
accuracy. 

Inference of the Study 
In this study, deep learning methods are investigated to detect and to segment blood cancer. The following points in 
this study can be concluded. 
 
• The classification accuracy for the same microscopic image of blood cancer with the same training set of data varies 
when utilizing the DenseNet201, ResNet152v2, SEresnet152, VGG19, and ResNext101 models. We obtain accuracy of 
98.08%, 96.99%, 90.93%, 96.94%, and 86.41%, respectively. A CNN (convolutional neural network) with 19 layers 
is called VGG-19. By learning the residual representation functions rather than the signal representation directly, 
ResNet152 can have an extremely deep network with up to 152 layers. While each of these models address the identical 
image classification problem, we have compared the accuracy of the VGG19 and ResNet152 architectures. Based 
on the comparison at epoch 20 as a sequential method, we have come to the decision that the ResNet is the better 
architecture. On the other hand, SEresNet152 performs worse than the ResNet for microscopic images. As a variant 
of a ResNet that is constructed as a generalized feature extractor and is migrated to the target dataset. The ResNet 
architecture is a deep residual network expansion that substitutes a residual block that uses a “splittransform-merge” 
technique for the traditional residual block. A ResNext101 replicates a structural component that combines a number of 
transformations with the same topology. After utilizing ResNext101, compared to a ResNet152v2 microscope image, it is 
difficult to detect clearly that’s reason accuracy ratio is poor than others. By adopting shorter connections between the 
layers, the DenseNet201 (Dense Convolutional Network) design aims to increase the depth of deep learning networks 
while also improving training efficiency. As a result, DenseNet201 was designed exclusively to increase accuracy caused 
by highlevel neural networks’ vanishing gradient, which occurs because of the distance between input and output layers.  

• In our study pin points that negative transfer which is caused from dissimilar target and source dataset. This outcome 
stressed the excellence of transfer learning though it has the potential to successfully train deep learning models. 

• Even if a specific CNN architecture does not perform well, an ensemble of several models still may outperform 
individual models. Using DenseNet201, SEresnet152, and VGG19, an ensemble model (DVS) with the best accuracy of 
98.76% was proposed in this paper. Ensemble process of keeping the connections between the layers simpler using 
DenseNet201 and the SEresnet152 converted to a generalized feature extractor of target dataset with a deep network 
with up to 19 layers using VGG19.  
 
Contributions 
A comparison study of blood cancer classification and segmentation is important to gain a full understanding of CNN 
performance in blood cancer research using four classes and 3235 images, we presented classification results of original, 
transfer learning and ensemble learning. Multiple CNN architectures, performance metrics are used for the comparative 
study, such as inference time, model complexity, computational complexity, and mean per class accuracy. An ensemble 
model was developed with an aim to increase accuracy and the study confirms that an ensemble model outperforms 
single CNN architecture. The ensemble model is 98.76% accuracy rate of the DVS (DenseNet201, SEresNet152 and 
VGG19). This shows that the DVS ensemble model has a better ability to classify blood cancer. Thus, the DVS ensemble 
model has better classification performance and can assist in the diagnosis of blood cancer more accurately. 

Limitations and Future Scopes 
In this study, a deep learning model was developed to accurately detect and classify two distinct types of construction 
machinery. The network’s performance, a transfer learning and ensemble model strategy. 
 
However, it is important to acknowledge certain limitations in the current research that should be addressed in future 
work. Firstly, the study was constrained by the use of free-of-charge resources, specifically Google Colab. This limitation 
restricted the scope of experiments conducted in this study. Due to the time constraints imposed by Google Colab’s 
limited server availability, certain aspects such as hyperparameter tuning, training the base model on databases other 
than ImageNet (which was used as the base database for transfer learning in this research), and the exploration of 
various optimizers such as Adadelta, FTRL, NAdam, and Adadelta were not performed. 
 
Additionally, another limitation of this research lies in the use of secondary data that were publicly available, rather than 
collecting primary data directly from field observations or experiments. Addressing these limitations in future work will 
contribute to a more comprehensive and robust investigation of construction machinery detection and classification. 
 
For the forthcoming development phase, we plan to leverage the Python Flask framework to design a user interface that 
empowers patients to detect and localize blood cancer diseases. The interface will not only provide detection results but 
also offer explanations for the detected conditions. Our objective is to propose a paradigm shift where the conventional 
differentiation between illness and health is replaced with a continuous spectrum of identifiable blood cell states. This 
approach aims to enhance the ability to predict future health risks in asymptomatic patients by identifying specific blood 
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cell states associated with heightened risks of future diseases. 

Conclusion 
Early detection and classification of blood cancer is the most necessity to correctly diagnose an affected patient.  Out 
study suggest that detection approach using D-CNN is effective for small and dirty set of dataset. According to what 
we know, relatively little study has been done particularly to find blood cancer. The comparison study might be very 
effective for providing better blood cancer management. We evaluated the efficacy of different CNN models, including 
transfer learning and ensemble model in the detection of blood cancer. We discovered that ensemble DVS model of three 
networks DenseNet201, VGG19, and SEresNet152 delivers superior accuracy based on the accuracy [41-50]. 

Declaration of Competing Interest 
The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

Data Availability 
The data of this research are stored in the Kaggle respiratory. 

Funding Statement 
The work was not supported by any funding and neither did any of the researchers receive funds. 
 
References 
1.	 Iqbal, S., Ghani, M. U., Saba, T., & Rehman, A. (2018). Brain tumor segmentation in multi‐spectral MRI using 

convolutional neural networks (CNN). Microscopy research and technique, 81(4), 419-427.
2.	 Sun, Y., & Wang, C. (2022). A computation-efficient CNN system for high-quality brain tumor segmentation. 

Biomedical Signal Processing and Control, 74, 103475.
3.	 Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. 

Computers in biology and medicine, 111, 103345.
4.	 Al-qazzaz, S., Sun, X., Yang, H., Yang, Y., Xu, R., Nokes, L., & Yang, X. (2021). Image classificationbased blood 

cancer tissue segmentation. Multimedia Tools and Applications, 80(1), 993–1008. 
5.	 Ayadi, W., Elhamzi, W., Charfi, I., & Atri, M. (2021). Deep CNN for blood cancer classification. Neural Processing 

Letters, 53(1), 671-700. 
6.	 Iqbal, S., Ghani, M. U., Saba, T., & Rehman, A. (2018). Brain tumor segmentation in multi‐spectral MRI using 

convolutional neural networks (CNN). Microscopy research and technique, 81(4), 419-427. 
7.	 Chattopadhyay, A., & Maitra, M. (2022). MRI-based brain tumour image detection using CNN based deep learning 

method. Neuroscience informatics, 2(4), 100060. 
8.	 Khan, A. R., Khan, S., Harouni, M., Abbasi, R., Iqbal, S., & Mehmood, Z. (2021). Brain tumor segmentation using 

K‐means clustering and deep learning with synthetic data augmentation for classification. Microscopy Research 
and Technique, 84(7), 1389-1399.

9.	 Kibriya, H., Masood, M., Nawaz, M., & Nazir, T. (2022). Multiclass classification of brain tumors using a novel CNN 
architecture. Multimedia tools and applications, 81(21), 29847-29863.

10.	Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference 
on computer vision and pattern recognition (pp. 7132-7141). 

11.	Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE 
conference on computer vision and pattern recognition (pp. 1251-1258). 

12.	Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020). An ensemble learning approach for brain cancer 
detection exploiting radiomic features. Computer methods and programs in biomedicine, 185, 105134. 

13.	Nanglia, S., Ahmad, M., Khan, F. A., & Jhanjhi, N. Z. (2022). An enhanced Predictive heterogeneous ensemble model 
for breast cancer prediction. Biomedical Signal Processing and Control, 72, 103279. 

14.	Acharya, A., Muvvala, A., Gawali, S., Dhopavkar, R., Kadam, R., & Harsola, A. (2020, November). Plant Disease 
detection for paddy crop using Ensemble of CNNs. In 2020 IEEE International Conference for Innovation 
in Technology (INOCON) (pp. 1-6). IEEE.

15.	Khan, M. B., Islam, T., Ahmad, M., Shahrior, R., & Riya, Z. N. (2021). A CNN based deep learning approach for leukocytes 
classification in peripheral blood from microscopic smear blood images. In Proceedings of International Joint 
Conference on Advances in Computational Intelligence: IJCACI 2020 (pp. 67-76). Springer Singapore.

16.	Majeed, T., Rashid, R., Ali, D., & Asaad, A. (2020). Issues associated with deploying CNN transfer learning to detect 
COVID-19 from chest X-rays. Physical and Engineering Sciences in Medicine, 43(4), 1289-1303. 

17.	 Elshennawy, N. M., & Ibrahim, D. M. (2020). Deep-pneumonia framework using deep learning models based on 
chest X-ray images. Diagnostics, 10(9), 649. 

18.	Kousalya, K., Krishnakumar, B., Aswath, A. S., Gowtham, P. S., & Vishal, S. R. (2021, November). Terrain identification 
and land price estimation using deep learning. In AIP Conference Proceedings (Vol. 2387, No. 1). AIP Publishing. 

19.	Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv 
preprint arXiv:1409.1556.

20.	Kamil, M. Y. (2021). A deep learning framework to detect Covid-19 disease via chest X-ray and CT scan images. 
International Journal of Electrical & Computer Engineering (2088-8708), 11(1). 

https://www.primeopenaccess.com/international-journals/hematology-journal-of-blood-science-and-disorders-current-issue.asp
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22994
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22994
https://www.sciencedirect.com/science/article/pii/S1746809421010727
https://www.sciencedirect.com/science/article/pii/S1746809421010727
https://www.sciencedirect.com/science/article/pii/S0010482519302148
https://www.sciencedirect.com/science/article/pii/S0010482519302148
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22994
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.22994
https://www.sciencedirect.com/science/article/pii/S277252862200022X
https://www.sciencedirect.com/science/article/pii/S277252862200022X
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23694
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23694
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23694
https://link.springer.com/article/10.1007/s11042-022-12977-y
https://link.springer.com/article/10.1007/s11042-022-12977-y
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
http://openaccess.thecvf.com/content_cvpr_2017/html/Chollet_Xception_Deep_Learning_CVPR_2017_paper.html
https://www.sciencedirect.com/science/article/pii/S0169260719305115
https://www.sciencedirect.com/science/article/pii/S0169260719305115
https://www.sciencedirect.com/science/article/pii/S1746809421008764
https://www.sciencedirect.com/science/article/pii/S1746809421008764
https://ieeexplore.ieee.org/abstract/document/9298295/
https://ieeexplore.ieee.org/abstract/document/9298295/
https://ieeexplore.ieee.org/abstract/document/9298295/
https://link.springer.com/chapter/10.1007/978-981-16-0586-4_6
https://link.springer.com/chapter/10.1007/978-981-16-0586-4_6
https://link.springer.com/chapter/10.1007/978-981-16-0586-4_6
https://link.springer.com/article/10.1007/s13246-020-00934-8
https://link.springer.com/article/10.1007/s13246-020-00934-8
https://www.mdpi.com/2075-4418/10/9/649
https://www.mdpi.com/2075-4418/10/9/649
https://pubs.aip.org/aip/acp/article-abstract/2387/1/140030/999958
https://pubs.aip.org/aip/acp/article-abstract/2387/1/140030/999958
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.researchgate.net/profile/Mohammed-Kamil-8/publication/344398328_A_deep_learning_framework_to_detect_Covid-19_disease_via_chest_X-ray_and_CT_scan_images/links/5f70bde3a6fdcc00863fb249/A-deep-learning-framework-to-detect-Covid-19-disease-via-chest-X-ray-and-CT-scan-images.pdf
https://www.researchgate.net/profile/Mohammed-Kamil-8/publication/344398328_A_deep_learning_framework_to_detect_Covid-19_disease_via_chest_X-ray_and_CT_scan_images/links/5f70bde3a6fdcc00863fb249/A-deep-learning-framework-to-detect-Covid-19-disease-via-chest-X-ray-and-CT-scan-images.pdf


21Hematol J Blood Sci Disord, 2025

21.	Brunese, L., Mercaldo, F., Reginelli, A., & Santone, A. (2020). An ensemble learning approach for brain cancer 
detection exploiting radiomic features. Computer methods and programs in biomedicine, 185, 105134.

22.	Kanniappan, S., Samiayya, D., Vincent PM, D. R., Srinivasan, K., Jayakody, D. N. K., Reina, D. G., & Inoue, A. (2020). 
An efficient hybrid fuzzy-clustering driven 3D-modeling of magnetic resonance imagery for enhanced brain tumor 
diagnosis. Electronics, 9(3), 475. 

23.	Mehta, R., & Arbel, T. (2018). 3D U-Net for blood cancer segmentation. In International MICCAI Brainlesion Workshop 
(pp. 254–266). Springer. 

24.	Claro, M., Vogado, L., Veras, R., Santana, A., Tavares, J., Santos, J., & Machado, V. (2020, July). Convolution neural 
network models for acute leukemia diagnosis. In 2020 international conference on systems, signals and 
image processing (IWSSIP) (pp. 63-68). IEEE.

25.	Abir, W. H., Uddin, M. F., Khanam, F. R., Tazin, T., Khan, M. M., Masud, M., & Aljahdali, S. (2022). [Retracted] Explainable 
AI in Diagnosing and Anticipating Leukemia Using Transfer Learning Method. Computational Intelligence and 
Neuroscience, 2022(1), 5140148. 

26.	Karar, M. E., Alotaibi, B., & Alotaibi, M. (2022). Intelligent medical IoT-enabled automated microscopic image 
diagnosis of acute blood cancers. Sensors, 22(6), 2348. 

27.	 Sampathila, N., Chadaga, K., Goswami, N., Chadaga, R. P., Pandya, M., Prabhu, S., ... & Upadya, S. P. (2022, 
September). Customized deep learning classifier for detection of acute lymphoblastic leukemia using blood smear 
images. In Healthcare (Vol. 10, No. 10, p. 1812). MDPI. 

28.	Choi, J. W., Ku, Y., Yoo, B. W., Kim, J. A., Lee, D. S., Chai, Y. J., ... & Kim, H. C. (2017). White blood cell differential 
count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PloS one, 
12(12), e0189259. 

29.	Tusar, M. T. H. K., & Anik, R. K. (2022). Automated detection of acute lymphoblastic leukemia subtypes from 
microscopic blood smear images using Deep Neural Networks. arXiv preprint arXiv:2208.08992. 

30.	Jha, K. K., Das, P., & Dutta, H. S. (2022, March). Artificial neural network-based leukaemia identification and 
prediction using ensemble deep learning model. In 2022 International Conference on Communication, 
Computing and Internet of Things (IC3IoT) (pp. 1-6). IEEE.

31.	Parayil, S., & Aravinth, J. (2022, June). Transfer learning-based feature fusion of white blood cell image classification. 
In 2022 7th International Conference on Communication and Electronics Systems (ICCES) (pp. 1468-
1474). IEEE.

32.	Cheuque, C., Querales, M., León, R., Salas, R., & Torres, R. (2022). An efficient multi-level convolutional neural 
network approach for white blood cells classification. Diagnostics, 12(2), 248.

33.	Rastogi, P., Khanna, K., & Singh, V. (2022). LeuFeatx: Deep learning–based feature extractor for the diagnosis of 
acute leukemia from microscopic images of peripheral blood smear. Computers in Biology and Medicine, 142, 
105236.

34.	https://www.researchgate.net/profile/Alagu-s/publication/353659892_Chronological_Sine_Cosine_Algorithm_
Based_Deep_CNN_for_Acute_Lymphocytic_Leukemia_Detection/links/611510c41e95fe241ac71e8b/Chronological-
Sine-Cosine-Algorithm-Based-Deep-CNN-for-Acute-Lymphocytic-Leukemia-Detection.pdf 

35.	Baig, R., Rehman, A., Almuhaimeed, A., Alzahrani, A., & Rauf, H. T. (2022). Detecting malignant leukemia cells using 
microscopic blood smear images: a deep learning approach. Applied Sciences, 12(13), 6317. 

36.	Vogado, L., Veras, R., Aires, K., Araújo, F., Silva, R., Ponti, M., & Tavares, J. M. R. (2021). Diagnosis of leukaemia in 
blood slides based on a fine-tuned and highly generalisable deep learning model. Sensors, 21(9), 2989. 

37.	 Vo, Q. H., Le, X. H., Le, T. H., & Pham, T. T. H. (2022). A deep learning approach in detection of malaria and 
acute lymphoblastic leukemia diseases utilising blood smear microscopic images. Vietnam Journal of Science, 
Technology and Engineering, 64(1), 63-71. 

38.	Murugesan, G. K., Nalawade, S., Ganesh, C., Wagner, B., Yu, F. F., Fei, B., ... & Maldjian, J. A. (2020). Multidimensional 
and multiresolution ensemble networks for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, 
Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 
2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II 5 (pp. 148-157). Springer International 
Publishing.

39.	Murugesan, G. K., Nalawade, S., Ganesh, C., Wagner, B., Yu, F. F., Fei, B., ... & Maldjian, J. A. (2020). Multidimensional 
and multiresolution ensemble networks for brain tumor segmentation. In Brainlesion: Glioma, Multiple Sclerosis, 
Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Held in Conjunction with MICCAI 
2019, Shenzhen, China, October 17, 2019, Revised Selected Papers, Part II 5 (pp. 148-157). Springer International 
Publishing. 

40.	Arbane, M., Benlamri, R., Brik, Y., & Djeri-Oui, M. (2021). Transfer learning for automatic blood cancer classification 
using MRI images. In 2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-
being (IHSH) (pp. 210–214). IEEE. 

41.	Ruba, T., Tamilselvi, R., & Beham, M. P. (2023). Brain tumor segmentation in multimodal MRI images using novel 
LSIS operator and deep learning. Journal of Ambient Intelligence and Humanized Computing, 14(10), 
13163-13177. 

42.	Huang, G., Liu, Z., Pleiss, G., Van Der Maaten, L., & Weinberger, K. Q. (2019). Convolutional networks with dense 
connectivity. IEEE transactions on pattern analysis and machine intelligence, 44(12), 8704-8716. 

43.	He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity mappings in deep residual networks. In Computer Vision–ECCV 
2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part IV 14 (pp. 

https://www.primeopenaccess.com/international-journals/hematology-journal-of-blood-science-and-disorders-current-issue.asp
https://www.sciencedirect.com/science/article/pii/S0169260719305115
https://www.sciencedirect.com/science/article/pii/S0169260719305115
https://www.mdpi.com/2079-9292/9/3/475
https://www.mdpi.com/2079-9292/9/3/475
https://www.mdpi.com/2079-9292/9/3/475
https://ieeexplore.ieee.org/abstract/document/9145406/
https://ieeexplore.ieee.org/abstract/document/9145406/
https://ieeexplore.ieee.org/abstract/document/9145406/
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/5140148
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/5140148
https://onlinelibrary.wiley.com/doi/abs/10.1155/2022/5140148
https://www.mdpi.com/1424-8220/22/6/2348
https://www.mdpi.com/1424-8220/22/6/2348
https://www.mdpi.com/2227-9032/10/10/1812
https://www.mdpi.com/2227-9032/10/10/1812
https://www.mdpi.com/2227-9032/10/10/1812
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189259
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189259
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0189259
https://arxiv.org/abs/2208.08992
https://arxiv.org/abs/2208.08992
https://ieeexplore.ieee.org/abstract/document/9767874/
https://ieeexplore.ieee.org/abstract/document/9767874/
https://ieeexplore.ieee.org/abstract/document/9767874/
https://ieeexplore.ieee.org/abstract/document/9835815/
https://ieeexplore.ieee.org/abstract/document/9835815/
https://ieeexplore.ieee.org/abstract/document/9835815/
https://www.mdpi.com/2075-4418/12/2/248
https://www.mdpi.com/2075-4418/12/2/248
https://www.sciencedirect.com/science/article/pii/S0010482522000282
https://www.sciencedirect.com/science/article/pii/S0010482522000282
https://www.sciencedirect.com/science/article/pii/S0010482522000282
https://www.researchgate.net/profile/Alagu-s/publication/353659892_Chronological_Sine_Cosine_Algorithm_Based_Deep_CNN_for_Acute_Lymphocytic_Leukemia_Detection/links/611510c41e95fe241ac71e8b/Chronological-Sine-Cosine-Algorithm-Based-Deep-CNN-for-Acute-Lymphocytic-Leukemia-Detection.pdf
https://www.researchgate.net/profile/Alagu-s/publication/353659892_Chronological_Sine_Cosine_Algorithm_Based_Deep_CNN_for_Acute_Lymphocytic_Leukemia_Detection/links/611510c41e95fe241ac71e8b/Chronological-Sine-Cosine-Algorithm-Based-Deep-CNN-for-Acute-Lymphocytic-Leukemia-Detection.pdf
https://www.researchgate.net/profile/Alagu-s/publication/353659892_Chronological_Sine_Cosine_Algorithm_Based_Deep_CNN_for_Acute_Lymphocytic_Leukemia_Detection/links/611510c41e95fe241ac71e8b/Chronological-Sine-Cosine-Algorithm-Based-Deep-CNN-for-Acute-Lymphocytic-Leukemia-Detection.pdf
https://www.mdpi.com/2076-3417/12/13/6317
https://www.mdpi.com/2076-3417/12/13/6317
https://www.mdpi.com/1424-8220/21/9/2989
https://www.mdpi.com/1424-8220/21/9/2989
https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/38
https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/38
https://vietnamscience.vjst.vn/index.php/VJSTE/article/view/38
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/chapter/10.1007/978-3-030-46643-5_14
https://link.springer.com/article/10.1007/s12652-022-03773-5
https://link.springer.com/article/10.1007/s12652-022-03773-5
https://link.springer.com/article/10.1007/s12652-022-03773-5
https://ieeexplore.ieee.org/abstract/document/8721151/
https://ieeexplore.ieee.org/abstract/document/8721151/
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38


22Hematol J Blood Sci Disord, 2025

630-645). Springer International Publishing. 
44.	Kaldera, H. N. T. K., Gunasekara, S. R., & Dissanayake, M. B. (2019, March). Brain tumor classification and 

segmentation using faster R-CNN. In 2019 Advances in Science and Engineering Technology International 
Conferences (ASET) (pp. 1-6). IEEE.

45.	Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional 
neural networks. Artificial intelligence review, 53, 5455-5516. 

46.	Rao, C. S., & Karunakara, K. (2021). A comprehensive review on brain tumor segmentation and classification of MRI 
images. Multimedia Tools and Applications, 80(12), 17611-17643. 

47.	 Rangarajan Aravind, K., & Raja, P. (2020). Automated disease classification in (Selected) agricultural crops using 
transfer learning. Automatika: časopis za automatiku, mjerenje, elektroniku, računarstvo i komunikacije, 61(2), 
260-272. 

48.	Barbedo, J. G. A. (2018). Impact of dataset size and variety on the effectiveness of deep learning and transfer 
learning for plant disease classification. Computers and electronics in agriculture, 153, 46-53.

49.	Paymode, A. S., & Malode, V. B. (2022). Transfer learning for multi-crop leaf disease image classification using 
convolutional neural network VGG. Artificial Intelligence in Agriculture, 6, 23-33.

50.	Pinto, G., Wang, Z., Roy, A., Hong, T., & Capozzoli, A. (2022). Transfer learning for smart buildings: A critical review 
of algorithms, applications, and future perspectives. Advances in Applied Energy, 5, 100084. 

https://www.primeopenaccess.com/international-journals/hematology-journal-of-blood-science-and-disorders-current-issue.asp
https://link.springer.com/chapter/10.1007/978-3-319-46493-0_38
https://ieeexplore.ieee.org/abstract/document/8714263/
https://ieeexplore.ieee.org/abstract/document/8714263/
https://ieeexplore.ieee.org/abstract/document/8714263/
https://link.springer.com/article/10.1007/s10462-020-09825-6
https://link.springer.com/article/10.1007/s10462-020-09825-6
https://link.springer.com/article/10.1007/s11042-020-10443-1
https://link.springer.com/article/10.1007/s11042-020-10443-1
https://hrcak.srce.hr/239869
https://hrcak.srce.hr/239869
https://hrcak.srce.hr/239869
https://www.sciencedirect.com/science/article/pii/S0168169918304617
https://www.sciencedirect.com/science/article/pii/S0168169918304617
https://www.sciencedirect.com/science/article/pii/S2589721721000416
https://www.sciencedirect.com/science/article/pii/S2589721721000416
https://www.sciencedirect.com/science/article/pii/S2666792422000026
https://www.sciencedirect.com/science/article/pii/S2666792422000026

