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Abstract 
This study investigates the corrosion inhibition efficacy and mechanical strengthening potential of two bio-derived 
gums, Welan gum (WG) and Neem gum (NG), on steel-reinforced concrete exposed to chloride environments. 
Electrochemical techniques—electrochemical impedance spectroscopy (EIS) and Tafel polarization—were employed to 
evaluate corrosion resistance, complemented by scanning electron microscopy (SEM) to analyze surface morphology. 
Results demonstrated that both gums function as mixed-type inhibitors, forming protective films on steel surfaces, with 
WG exhibiting marginally superior inhibition efficiency (87%) compared to NG (84%). Density functional theory (DFT) 
calculations identified active molecular sites responsible for adsorption, aligning with experimental findings. Additionally, 
mechanical tests revealed enhanced compressive and split tensile strengths in gum-modified concrete, underscoring 
their dual functionality. The proposed inhibition mechanism involves synergistic physico-chemical interactions between 
gum molecules and the steel surface. This work highlights the potential of natural gums as sustainable, multifunctional 
additives for durable concrete infrastructure. 
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Introduction
Steel reinforcement in concrete structures remains indispensable in construction due to its cost-effectiveness and 
mechanical robustness. However, chloride ingress from marine environments or de-icing salts accelerates corrosion, 
compromising structural integrity and safety. Traditional synthetic inhibitors, though effective, raise environmental and 
toxicity concerns, driving demand for eco-friendly alternatives. Natural polymers, particularly plant-derived gums, offer 
promise due to their biodegradability, affordability, and multifunctional properties. 

Recent advances highlight polysaccharides like xanthan and guar gum as effective corrosion inhibitors and rheology 
modifiers in cementitious systems. However, limited studies explore their dual role in simultaneously mitigating 
corrosion and enhancing mechanical properties. This study bridges this gap by evaluating Welan gum (a microbial 
exopolysaccharide) and Neem gum (an exudate from Azadirachta indica) as sustainable corrosion inhibitors and 
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strength enhancers. Integrating electrochemical assessments, material characterization, and computational modeling, 
we elucidate the structure-activity relationship of these gums, offering insights into their practical application in marine 
and hydraulic concrete structures.. 

Materials and Methods 
Materials 
WG and NG were sourced from Salem District, India, authenticated (Voucher: BSI/SRC/5/23/2016/TECH/166), and 
processed into fine powders. Concrete specimens (150 × 100 × 100 mm³) were prepared per IS 10262-1982 using a 
1:2:4 cement-sand-gravel ratio, with embedded steel rebars (C: 0.37%, Mn: 1.21%). Gum solutions (250–750 ppm) 
were incorporated during mixing. 

Electro Chemical Testing 
A three-electrode cell (CHI 760D workstation) with a saturated calomel reference electrode and platinum counter 
electrode was used for EIS (0.01–10⁵ Hz, 2 mV amplitude) and Tafel polarization (0.5 mV/s scan rate). Charge transfer 
resistance (Rct) and double-layer capacitance (Cdl) were derived from Nyquist plots. 

Mechanical and Morphological Analysis 
Compressive and split tensile strengths were assessed per IS 10262-2009 after 7–120 days. SEM (TESCAN VEGA3) 
characterized steel surfaces post-immersion in 3.5% NaCl. 

Computational Details 
DFT calculations (Gaussian 09W) using B3LYP/6-311G++(d,p) optimized gum monomer geometries. Reactivity 
descriptors—HOMO, LUMO, electronegativity (χ), and global hardness (η)—were computed to identify adsorption-active 
sites.

Results and Discussion
Electrochemical Behavior 
Tafel analysis (Tables 1–2) revealed concentration-dependent inhibition, with WG (750 ppm) reducing corrosion current 
density from 1318 to 197 µA/cm² (85% efficiency). EIS data (Tables 3–4) showed increased Rct and decreased Cdl, 
confirming protective film formation. NG exhibited comparable trends but lower efficiency (82% at 750 ppm). 

Mechanical Performance 
Gum incorporation improved 120-day compressive strength by 11.2% (WG) and 10.2% (NG) versus control (38.3 
MPa). Split tensile strength increased to 3.35 MPa (WG) and 3.01 MPa (NG), attributed to enhanced pore structure and 
interfacial bonding. 

Surface and Molecular Insights 
SEM images (Figures 10–12) showed intact steel surfaces in gum-modified specimens versus severe pitting in controls. 
DFT simulations (Tables 6–7) highlighted electron-rich hydroxyl and carboxyl groups in WG as primary adsorption sites, 
aligning with its superior performance. The ΔN values (0.31–0.38) suggested electron donation from gum molecules to 
steel substrates.

Results and Discussion
Electrochemical Studies (Tafel Polarization & Impedance Methods)

 
 
2.2. Electro chemical Testing   
A three-electrode cell (CHI 760D workstation) with a saturated calomel reference electrode and platinum counter electrode 
was used for EIS (0.01–10⁵ Hz, 2 mV amplitude) and Tafel polarization (0.5 mV/s scan rate). Charge transfer resistance 
(Rct) and double-layer capacitance (Cdl) were derived from Nyquist plots.   
 
2.3. Mechanical and Morphological Analysis   
Compressive and split tensile strengths were assessed per IS 10262-2009 after 7–120 days. SEM (TESCAN VEGA3) 
characterized steel surfaces post-immersion in 3.5% NaCl.   
 
2.4. Computational Details  
DFT calculations (Gaussian 09W) using B3LYP/6-311G++(d,p) optimized gum monomer geometries. Reactivity 
descriptors—HOMO, LUMO, electronegativity (χ), and global hardness (η)—were computed to identify adsorption-active 
sites. 
 
3. Results and Discussion 

3.1. Electrochemical Behavior  
Tafel analysis (Tables 1–2) revealed concentration-dependent inhibition, with WG (750 ppm) reducing corrosion current 
density from 1318 to 197 µA/cm² (85% efficiency). EIS data (Tables 3–4) showed increased Rct and decreased Cdl, 
confirming protective film formation. NG exhibited comparable trends but lower efficiency (82% at 750 ppm).   
 

3.2. Mechanical Performance   
Gum incorporation improved 120-day compressive strength by 11.2% (WG) and 10.2% (NG) versus control (38.3 MPa). 
Split tensile strength increased to 3.35 MPa (WG) and 3.01 MPa (NG), attributed to enhanced pore structure and interfacial 
bonding.   
 

3.3. Surface and Molecular Insights  
SEM images (Figures 10–12) showed intact steel surfaces in gum-modified specimens versus severe pitting in controls. 
DFT simulations (Tables 6–7) highlighted electron-rich hydroxyl and carboxyl groups in WG as primary adsorption sites, 
aligning with its superior performance. The ΔN values (0.31–0.38) suggested electron donation from gum molecules to 
steel substrates. 
 
 
4. Results and Discussion 

4.1 Electrochemical Studies (Tafel Polarization & Impedance methods) 
 

 
 

Figure 1.Tafel plots of embedded steel in concrete without and with NG120 days 
Figure 1: Tafel Plots of Embedded Steel in Concrete Without and With NG120 Days

https://www.primeopenaccess.com/international-journals/molecular-genetics-gene-research.asp


3J Mol Genet Gene Res, 2025

 
 
 
 

 
   Figure 2. Tafel plots of embedded steel in concrete without and with WG 120 days 

 
The potentiodynamic polarization (PDS) curves were determined with the sweep rate of about 0.5 
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in chloride media are shown in Fig.2.1 and 2.2 and electrochemical parameters viz., corrosion potential (Ecorr), 
corrosion current density (Icorr), inhibition efficiency (%IE) and Tafel constants (ba and bc) of from Tafel curves 
are given in Table 1 & 2 Inhibition efficiency was calculated by, 
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changes, further supporting the conclusion of mixed-mode action for the studied inhibitors. The electrochemical impedance 
(EIS) response was measured over a frequency range of approximately 0.01 Hz to 100000 Hz at open-circuit potential, 
using a 1 mV sine wave AC voltage excitation. The equivalent circuit diagram corresponding to the EIS data is illustrated 
in Figures 1 and 2, where RΩ represents the resistance of the solution, Rt indicates the resistance of the corrosion product 
film, and Cdl denotes the capacitance of the parallel combination of the resistor and the corroding interface. The Nyquist 
plots for the impedance behavior of steel reinforced in chloride media, both without and with the introduction of various 
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incorporation of the gums leads to an increase in the value of charge transfer resistance (Rct) while reducing the double 
layer capacitance (Cdl). These variations are likely indicative of an increase in the thickness of the electronic double layer, 
which enhances the anticorrosive properties of the concrete. 
The increased values of charge transfer resistance (Rct) indicate the formation of a protective layer at the metal/solution 
interface. The results suggest that both Welan gum (WG) and Neem gum (NG) adsorb onto the metal surface, leading to a 
decrease in double layer capacitance (Cdl) values and an increase in Rct values. The charge transfer resistance (Rct), 
interfacial double layer capacitance (Cdl), and the inhibition efficiency were calculated using the following equations 
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characteristics help determine the susceptibility of molecules to electrophilic and nucleophilic attacks. The stability and 
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and reactivity of molecules are assessed through their hardness and softness values; generally, molecules with lower 
hardness tend to exhibit higher inhibition capabilities. As the dipole moment (μ) of a molecule increases, its volume 
also increases, enhancing the available surface area for interaction between the molecule and the iron surface, which 
subsequently improves corrosion inhibition. The electrophilicity index (ω) reflects the electron-accepting nature of 
inhibitor molecules [1-18]. It quantifies the stabilization energy gained when an inhibitor accepts excess electron charge 
from the environment. The theoretical results for the monomers (WG and NG) indicate that they function as effective 
inhibitors. Furthermore, the comparison of the calculated data suggests that Welan gum (WG) performs better than 
Neem gum (NG) in terms of ionization energy (IE) and other relevant values.

Conclusion 
WG and NG significantly inhibit steel corrosion in chloride environments while enhancing concrete durability. Their dual 
functionality as eco-friendly admixtures offers a sustainable strategy for extending infrastructure lifespan. DFT and 
empirical data validate WG’s superior performance, attributed to its electronic structure and adsorption efficacy. Future 
work could explore synergistic blends with other natural inhibitors for optimized protection.
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