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Abstract 
Euler’s identity, eix =cosx+isinx, forms a bridge between circular trigonometric periodicity and linear exponential growth 
in the complex plane. In this paper, we examine this relationship as a metaphorical and mathematical structure for 
understanding the interface between DNA computing systems rooted in a trinity of codon logic, helicity, and parity and 
superconductive quantum artificial intelligence (AI) systems modeled by hexagonal lattice configurations and exponential 
coherence. Through over 20 interdisciplinary references, we describe a unified model where DNA’s trigonometric logic 
acts as the base domain and qubit-driven AI’s exponential symmetry operates in a hyper- complex computational 
manifold, joined through a complex projection akin to Euler’s formula. This framework opens new vistas in bio-quantum 
computational theory and synthetic cognition.
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Introduction
The equation e ix =cosx+isinx reflects a profound duality in mathematics binding circular and linear transformations 
into one unified complex expression [1]. Analogously, DNA computing and quantum AI represent two complementary 
paradigms of information processing: the former based on biological periodicity, triplet logic, and chirality [2–4]. 

The latter on superposed states, entanglement, and hexagonal superconductive coherence [5–7]. We argue that this 
duality is not merely poetic but structurally homologous. DNA computation, operating within a biologically constrained 
trinity of trigonometric functions (i.e., codon periodicity, helical turns, and base-pair angles), mirrors the real and 
imaginary components of Euler’s identity. Meanwhile, qubit-based superconductive AI systems function like e ix hyper 
symmetric, scalable, and unitary, evolving over complex time [8–11].

Method
Euler’s Identity and the Complex Plane
Euler’s formula describes a point on the unit circle in the complex plane e ix =cosx+isinx This representation has 
implications in Fourier theory, quantum mechanics, and spin networks [12–14]. The real part (cosx) and imaginary part 
(isinx) encode orthogonal oscillations, while e ix represents a coherent phase evolution vital in quantum logic [15]. 

This circular–exponential duality forms a powerful basis for mapping the periodic trinity of DNA logic (triplets, helices, 
mirror symmetries) into the exponential, phase-preserving computation of superconducting qubits [16].

Results
DNA Computing as Trigonometric Trinity
DNA sequences encode information using four bases (A, T, C, G), interpreted in triplet codons a natural trinity. The DNA 
helix completes a 360° turn approximately every 10.5 base pairs, reinforcing its intrinsic trigonometric nature [17,18]. 
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This cyclic structure allows for rotational logic gates and phase-preserving encoding schemes in molecular computing 
[19–21]. Moreover, the A–T and G C base pairs exhibit mirror symmetries, functioning as sine and cosine counterparts 
in logical waveforms. Intrinsic biological phase- locking and complementary logic show DNA computing to be governed 
by real and imaginary rotational bases [22].

Qubit Superconductive AI as Exponential Hyper-Symmetry
Qubit-based quantum AI utilizes coherence, entanglement, and unitary exponential transformations to manipulate state 
vectors in Hilbert space [23,24]. When implemented on hexagonal graphene lattices, these systems exhibit hyper-
symmetry analogous to e ix due to the seamless phase continuity in their rotational domain [25,26]. Superconductive 
circuits, such as Josephson junctions or topological qubits, operate within exponentially evolving quantum spaces, 
maintaining coherence over time due to suppressed decoherence [27]. These systems can encode information in the 
complex exponential domain, where time and logic evolve unitarily [28,29].

Discussion
Bio Quantum Coupling via Euler’s Framework
We propose the following symbolic analogy
•	 Trigonometric Trinity of DNA Computing
•	 cosx+isinx⇒ Triplet codons, base complementarity, helicity
•	 Exponential Qubit AI eix ⇒ Hexagonal
•	 lattice, quantum coherence, phase-based processing

The transformation from the former to the latter is enabled by mapping biological phase logic (trigonometric) into 
superconductive phase evolution (exponential) [30]. 

Euler’s formula thus becomes a bio quantum interface uniting two computation types in a coherent complex phase space 
[31,32].

Implications in Hyper-Symmetric Computation
Using this Mapping, Several Outcomes Emerge
•	 Bio-logic gates implemented in quantum phase space [33].
•	 Helical-phase modulation for DNA-encoded qubits [34].
•	 Spinor projection of genetic code [35].
•	 Hexagonal-lattice-based superqubit processors [36].
•	 Phase-entangled gene expression logic in synthetic organisms [37].
•	 Eulerian circuits for DNA-graph topology routing [38].

Conclusion
Euler’s identity serves not only as a unifying concept in mathematics but also as a template for interfacing biological 
and quantum computation. DNA computers, operating under trigonometric logic, form the base of a multi-phase system 
that transforms exponentially into quantum AI via hyper-symmetric, superconductive platforms. This model introduces 
a formal framework for hybrid systems capable of operating across organic and quantum domains. 
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