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Abstract
To derive the precise fine structure constant, we use an approach based on hypercomplex algebra, including Hamilton’s 
4D quaternions, Cayley’s 8D octonions, and 16D sedenions, which have broad applications in particle physics. This 
framework allows us to investigate electron quantum dynamics, introducing a hypercomplex non-Abelian, non-associative 
gauge for the Dirac equation with internal structure. Extending 4D spacetime to a higher-dimensional lattice, we show 
that electron coupling to a quantized gauge field yields an effective quantized mass. This approach derives an inverse 
fine-structure constant of 137 from the su (2) octonion gauge and a precise experimental match of 137.035999206 from 
the (su(2) ⊕ su(2) ⊕ su(2)) × S3 ⊕ su(2)  sedenion gauge. These gauges dictate lepton masses in higher-dimensional 
generalized Einstein’s massenergy relation. The fundamental constant, linked to Pythagorean primes, governs electron-
photon interactions and plays a crucial role across physics. 
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Introduction 
The fine-structure constant is an important physical parameter that dictates the coupling strength of the electromagnetic 
interactions between charged particles or between charged or magnetic particles in an external electromagnetic field 
[1].  Its value has been determined with unprecedented accuracy to the 10th decimal digit [2,3]. However, its origin 
for why this constant takes its value has been a century-old mystery.  Many great physicists, including Pauli, Dirac, 
Feynman, Weinberg, and many others have been puzzled by this dimensionless constant and have commented on 
its baffling origin. In this work, we propose an approach based on hypercomplex algebra, generalized gauge, Dirac 
equation, and spacetime quantization to answer the longstanding question. The imaginary number, invented by Cardano 
in the 16th century to solve general polynomial equations, its extension to a complex-value system has become the 
foundation of mathematics [4]. The complex numbers are also essential in physics, and are indispensable in describing 
Newtonian dynamics, Maxwell's equation of electromagnetism, special and general relativity, quantum mechanics, etc.  
Since Hamilton invented quaternions in the mid-18th century, higher dimensional hyper complex algebra has found 
many applications, which can be constructed using the Cayley-Dickson scheme, layer by layer from lowest-dimensional 
real number system to 2D complex numbers, then to 4D quaternion, 8D octonion, and 16D sedenion algebra [5-9]. 
Recently, with the advances in computer technologies, quaternions have been used in computer graphics and gaming 
technologies, and software development for aviation and flight simulation. In physics, qualifications could be applied 
to special relativity and quantum theory.  Other than quaternions, higher-dimensional hyper complex algebra, such as 
octonions and sedenions, has found applications in particle physics as a foundation for theoretical development beyond 
the Standard Model [7, 10]. In this work we shall first introduce what hypercomplex numbers are, the applications 
to electromagnetism, special relativity, Dirac equation, U (1) Lorentz gauge symmetry, hyper complex gauge, mass 
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acquisition, quantized gauge and mass generalized Dirac equation, and finally the derivation of the fine structure 
constant [11,12]. 

Hypercomplex Algebra and Applications 
Number theory is not only an important subject in mathematics but also an essential foundation for the description 
of a physical system involving Newtonian dynamics, Maxwell’s electromagnetism, Einstein’s special and general 
relativity, Schrödinger’s wave mechanic, Heisenberg’s matrix mechanism in non-relativistic quantum theory, relativistic 
electrodynamics and (QED) and quantum chromodynamics (QCD) [13,14].  Complex numbers are indispensable for 
describing the periodic phenomena in classical and quantum systems, even though all physical measurements only 
involve real numbers. The use of the complex number system is necessary in many branches of physics, for example, 
the Minkowski space in relativity involves an imaginary time, Schoedinger’s equation involves complex-valued wave 
amplitude, and Heisenberg matrix mechanics involves time and momentum operators with an imaginary derivative 
in time and space. All periodical dynamics, such as pendulum motion, orbiting satellites and planets, sound waves, 
electromagnetic waves, and AC circuitry, with a frequency can be described by Euler’s famous identity relation of 𝑒𝑖𝜔𝑡= 
𝒄𝒐𝒔(𝜔𝑡) + 𝑖𝒔𝒊𝒏(𝜔𝑡), which is the foundation of the Fourier analysis. 

In this work, we will explain the concepts of hypercomplex numbers and various applications in physics, especially 
quantum theory for the electron, Dirac’s equation, gauge fields, and generalized Dirac equation based on octonions and 
sedenions. Then, we will show how to derive the fine-structure constant, based on the lattice spacetime with quantized 
gauge and electron’s mass in terms of the octonion and sedenion operators.  

Construction of high-dimensional hyper complex algebra 
Here we discuss the mathematical structures of hypercomplex number systems. They are extended, via the Cayley-
Dickson construction scheme layer upon layer, from 2D complex algebra to a higher dimensional algebra [6]. 
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A. Construction of high-dimensional hypercomplex algebra 

Here we discuss the mathematical structures of hypercomplex number systems. They are 

extended, via the Cayley-Dickson construction scheme [6] layer upon layer,  from 2D complex 

algebra to a higher dimensional algebra. 

 

Table 1.  Cayley-Dickson’s hypercomplex-number construction scheme  

Complex C = (R1, R2) (R1, R2)(R3, R4) = (R1R3-R4R2 , R4R1+R2R3) 

Quaternion Q = (C1, C2) (C1, C2)(C3, C4) = (C1C3-C4
*C2 , C4C1+C2C3

*) 

Octonion O =(Q1, Q2) (Q1, Q2)(Q3, Q4) = (Q1Q3-Q4
*Q2 , Q4Q+Q2Q3

*) 

Sedenion S =(O1, O2) (O1, O2)(O3, O4) = (O1O3-O4
*O2 , O4O+O2O3

*) 

 Table 1: Cayley-Dickson’s Hyper Complex-Number Construction Scheme

According to Table 1, a complex number can be constructed by a pair of real numbers with the prescribed multiplication 
rule. Because there is an isomorphism between a complex plane and 2D plane of paired real numbers, one can 
essentially use only a real number system to describe any periodical dynamics in a classical and non-relativistic quantum 
system, and except that the equation’s explicit expression using the complex system is much simpler and concise. Such 
an equivalent description between the linear algebra of complex plane and 2D real-number plane no longer holds in 
relativistic quantum theory involving anti-commutative matrices unless one extends the complex algebra to complex 
non-commutative Dirac gamma matrices [15]. In octonion and sedenion algebra, the operators are not only anti-
commutative but also non-associative; therefore, they could be represented by associative matrices. As shown in Fig. 
1, the structure of sedenios consists of four quartets a 4D quaternion {𝑰, 𝜞𝟏,  𝜞𝟐,  𝜞𝟑}, and three q uartets such as {𝜣1,  𝑼1,  
𝑼2,  𝑼3} which is part of octonion, and two other quartets, {𝜣2,  𝑽1,  𝑽2,  𝑽3} and {𝜣3,  𝑾1,  𝑾2,  𝑾3}. Unlike the unity element 
I, whichforms a cyclic spinor triplet, they all anticommutative among themselves, and with the other spinor triplet sets, 
such as {𝑼1,  𝑼2,  𝑼3}, V1, V2, V3 {𝑾1,  𝑾2,  𝑾3} and {𝑰, 𝜞𝟏,  𝜞𝟐,  𝜞𝟑}. 
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Figure 1: The Schematic Diagram Showing the Mathematical Structure of 16D Sedenion Algebra Consists 
Of One Quaternion Set and Three Other Quartets Which Contain Their Pseudo Scalar Operator 𝜣k, Which 
Anti-Commutates With All Other Spinor Triplet Members
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I and represents the exterior space-time, 𝜣k represents the pseudo-temporal operator, together with Uk, Vk, and Wk 
spatial operators form three quartets that play an important role for three generations of leptons and quarks. Altogether, 
these twelve anti-commutative operators describe the internal 12D spacetime.  

In the mid-18th century Hamilton invented quaternion algebra, which possesses four degrees of freedom, represented 
by four basic elements, {1, 𝒊, 𝒋, 𝒌} according to Hamilton’s original notation, or {𝑰, 𝜞𝟏,  𝜞𝟐,  𝜞𝟑}in our notation to avoid 
confusion with integer indices with these basis quaternion elements.  The multiplication tale of quaternions is given in 
Table 2 [7].  

There are basis elements of imaginary numbers with 𝜞2
𝑘= −𝑰, {𝜞𝑖. 𝜞𝑗} = 0,  𝑖𝑓𝑖 ≠ 𝑗.

5 
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𝜣𝜣𝑘𝑘, which anti-commutates with all other spinor triplet members. I and k represent the exterior 

spacetime,  k represents the pseudo-temporal operator, together with Uk, Vk, and Wk spatial 

operators form three quartets that play an important role for three generations of leptons and 

quarks. Altogether, these twelve anti-commutative operators describe the internal 12D 

spacetime.  

 

In the mid-18th century Hamilton invented quaternion algebra, which possesses four 

degrees of freedom, represented by four basis elements, {1, 𝒊𝒊, 𝒋𝒋, 𝒌𝒌}according to Hamilton’s 

original notation, or {𝑰𝑰, 𝜞𝜞𝟏𝟏, 𝜞𝜞𝟐𝟐, 𝜞𝜞𝟑𝟑} in our notation to avoid confusion with integer indices with 

these basis quaternion elements.  The multiplication tale of quaternions is given in Table 2 [7].  

There are basis elements of imaginary numbers with  𝜞𝜞𝑘𝑘2 = −𝑰𝑰, {𝜞𝜞𝑖𝑖. 𝜞𝜞𝑗𝑗} = 0, 𝑖𝑖𝑖𝑖𝑖𝑖 ≠ 𝑗𝑗.  

 

Table. 2.  The multiplication table of quaternions {𝑰𝑰, 𝜞𝜞1, 𝜞𝜞2, 𝜞𝜞3} with one unity element and three 

anti-commutative imaginary basis elements  

𝑰𝑰 𝜞𝜞1 𝜞𝜞2 𝜞𝜞3 

𝜞𝜞1 −𝑰𝑰 𝜞𝜞3 −𝜞𝜞2 

𝜞𝜞2 −𝜞𝜞3 −𝑰𝑰 𝜞𝜞1 

𝜞𝜞3 𝜞𝜞2 −𝜞𝜞1 −𝑰𝑰 

.  

Quaternions can be used to describe Minkowski space and Maxwell equation. Three anti-

commutative operators, SU(2) spinor triplet, can be represented by Pauli matrices.  They can 

related to 3D rotations, thus have been applied in gaming and aviation software technology. One 

can use Pauli’s three 2 by 2 anti-commutative matrices 𝜎𝜎𝑘𝑘 to represent these quaternion basis elements by 

defining𝜞𝜞𝑘𝑘 = 𝑖𝑖𝜎𝜎𝑘𝑘, where 𝜎𝜎𝑖𝑖𝜎𝜎𝑗𝑗 = 𝜀𝜀𝑖𝑖𝑗𝑗𝑘𝑘𝜎𝜎𝑘𝑘 + 𝛿𝛿𝑖𝑖𝑗𝑗𝑰𝑰.  When Dirac attempted to develop a relativistic wave 

equation for the electron because three Pauli matrices are not sufficient, he invented four anti-

commutative operators which represented by the tensor product of three Pauli matrices and an 

Table 2:  The Multiplication Table of Quaternion’s {𝑰, 𝜞1,  𝜞2,  𝜞3} With One Unity Element and Three Anti-
Commutative Imaginary Basis Elements  

Quaternions can be used to describe Minkowski space and Maxwell equation. Three anticommutative operators, SU (2) 
spinor triplet, can be represented by Pauli matrices.  They can relate to 3D rotations, thus have been applied in gaming 
and aviation software technology. One can use Pauli’s three 2 by 2 anti-commutative matrices 𝜎𝑘to represent these 
quaternion basis elements by defining𝜞𝑘= 𝑖𝜎𝑘, where 𝜎𝑖𝜎𝑗= 𝑖𝑗𝑘𝜎𝑘+  𝛿𝑖𝑗𝑰. When Dirac attempted to develop a relativistic wave 
equation for the electron because three Pauli matrices are not sufficient, he invented four anticommutative operators 
which represented by the tensor product of three Pauli matrices and an identity matrix. However, for a massless fermion, 
three SU (2) spinor operators in quaternions are sufficient. One could use quaternions to describe the electric and 
magnetic fields. Defining𝑬 = 𝐸𝑘𝜞𝑘, 𝑩 = 𝑖𝐵𝑘𝜞𝑘, a quaternion field𝐹 = (𝜑, 𝑬 + 𝑖𝑩 ),and a derivative quaternion operator 𝐷 =
(𝜕𝑡, 𝛻), one can express Maxwell equations, 𝛻⋅𝑬 = 𝜌, 𝛻⋅𝑩 = 0,  𝛻 × 𝑬 = − 𝜕𝑩 ⁄𝜕𝑡 , 𝛻 × 𝑩 = 𝑱 + 𝜕𝑬⁄𝜕𝑡,  by a single quaternion 
form as 𝐷 𝐹 = (𝜌, 𝑱 ), and the Maxwell field tensor by F = D A− A D, where 𝜌 is the electric density, and 𝑱 the current 
density.  

Years after Hamilton’s inventions of 4D quaternions, Cayley extended the work to octonions, which contains seven anti-
commutative imaginary operators and an identity basis element.  With their multiplication table given in Table 3 [8]. 
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multiplication table given in Table 3 [8].   

 

Table 3.  The multiplication table of octonions consist of one identity element and seven anti-

commutative basis elements.   

I 1 2  3  U1 U2 U3 

1 -I  3 -2 U1 - - U3 U2 

2 - 3 -I 1 U2 U3 - - U1 

 3 2 -1 -I U3 - U2 U1 - 

 -U1 - U2 -U3 -I 1 2  3 

U1  - U3 U2 −−1 -I - 3 2 

U2 U3  - U1 −−2  3 -I -1 

U3 - U2 U1  −− 3 -2 1 -I 

 

In the octonion algebra, the quaternion set of   {𝑰𝑰, 𝜞𝜞1, 𝜞𝜞2, 𝜞𝜞3}, represents the exterior 

Minkowski spacetime,  and another 4-element set {𝜣𝜣.𝑼𝑼1,𝑼𝑼2,𝑼𝑼3},  represents the internal 

spacetime of a particle. The operator 𝜣𝜣  is a pseudo time operator that causes conversion between 

two SU(2) spinors sets of  𝜞𝜞𝑘𝑘  , and 𝑼𝑼𝑘𝑘. We shall use octonion algebra as an alternate to 

generalize the Dirac equation for the electron.  

 

B. Dirac equation and Coulomb scalar gauge 

Table 3: The Multiplication Table of Octonions Consist Of One Identity Element and Seven Anticommutative 
Basis Elements   

In the octonion algebra, the quaternion set of {𝑰, 𝜞1,  𝜞2,  𝜞3}, represents the exterior Minkowski spacetime, and another 
4-element set {𝜣. 𝑼1,  𝑼2,  𝑼3}, represents the internal spacetime of a particle. The operator 𝜣 is a pseudo time operator that 
causes conversion between two SU (2) spinors sets of 𝜞𝑘, and 𝑼𝑘. We shall use octonion algebra as an alternate to 
generalize the Dirac equation for the electron.  

Dirac equation and Coulomb scalar gauge 
To derive a quantum wave equation for a relativistic electron, which is comparable with special relativity with the space 
and time variables equal footing, Dirac proposed a coupled linear differential equation using four anti-commutative 
matrices.  His equation can be expressed in the covariant form involving four anti0commutative gamma matrices as
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𝜎1 = (1 0) `, 𝜎2 = (𝑖 0), 𝜎3 = (0 −1) `, {𝜎𝑗,  𝜎𝑘} = 2𝛿𝑗𝑘𝑰2, where the natural unit of ℏ = 𝑐 = 1 is used. Dirac introduced 
the use of four anti-commutative operators so that the square of the equation would lead to Einstein’s mass-energy 
relation of 𝐸2 = 𝑝12 +  𝑝22 +  𝑝32 +  𝑚02.  In the presence of an electric or magnetic field, one has

Where 𝐽𝜇𝜈= 𝛹+ 𝛾𝜇𝛹, and the momentum operator needs to be replaced by𝑝𝜇→ 𝑝𝜇− 𝑒𝐴𝜇,  𝐴𝜇 is the electromagnetic four-
potential, and 𝐹 𝜇𝜈 is the Maxwell field tensor.  The above equation is the foundation for quantum electrodynamics. One 
can relate the four-potential 𝐴𝜇 to the electric and magnetic fields by   𝑬 = −𝛻𝜑 − 𝜕𝑨⁄𝜕𝑡, 𝑩 = 𝛻 × 𝑨.  Eq. (1) is invariant 
under local U (1) gauge transformation of the gauge function 𝜆 (𝑡, 𝒓) that satisfies 

We define dimensionless four-potential 𝛬 (𝑡, 𝒓) and dimensionless cou0ling strength             for 𝜆 (t,r)  which is related 
to electric potential ϕ and vector potential A 

The above scalar gauge with local transformation represents U (1) symmetry with one degree of freedom. The U (1) 
plays an important role in QED and the Standard Model that is based on the 𝑈 (1) × 𝑆𝑈 (2) × 𝑆𝑈 (3) symmetry. We shall 
generalize this gauge function to a hypercomplex gauge using higher dimensional octonions and sedenions.  
 
Generalized Dirac Equation and Hyper complex Gauge Based on Octonion Algebra
In QED, the Lorentz gauge and Dirac equation assume a point-like electron, which is invariant under gauge transformation 
[12]. However, if the electron is not a point-like particle but has a finite size, the U (1) gauge symmetry would be broken.  
As an alternative to Dirac’s theory, this generalized Dirac equation with octonions assumes a finite size and an internal 
structure for the electron. Therefore, the electron could acquire a rest mass. To describe the quantum dynamics of 
a particle in the physical world, in addition to the length and time unit in 4D spacetime, a particle’s mass or energy 
is required for a full physical description. That is why in Einstein’s massenergy relation 𝐸2 = 𝑐2(𝑃12 +  𝑃12 +  𝑃22 +  𝑃32 +  
𝑚02𝑐2) for a relativistic particle, the mass plays like an extra dimension in this Pythagorean formula for a 4D orthogonal 
structure consisting of three dimensions in momentum space and an extra dimension in mass.  Therefore, for a quantized 
spacetime lattice, mass should be treated as an operator as the 5th dimension, in addition to the 4D spacetime. 

In the quantized space-time lattice, the continuous differential wave equation becomes a discrete difference equation 
involving an equation involving integers in terms of the fundamental lattice units.  With the quantized spacetime, our 
generalized gauge represents a gauge for the symmetry-broken Lorentz gauge so that the bare electron can acquire 
a rest mass. Physically speaking, those four octonion operators {𝜣, 𝑼1,  𝑼2,  𝑼3} do not commute with the quaternion 
operators {𝜞1,  𝜞2,  𝜞3} which describe the Lorentz invariant Minkowski 4D spacetime.  The spinor set of the octonion 
algebra {𝑼1,  𝑼2,  𝑼3} is obtained by multiplying the quaternion spin set {𝜞1,  𝜞2,  𝜞3}  by 𝜣, where 𝜣 is a pseudo-temporal 
operator that dictates the intrinsic rest mass of the particle. The complexified operator 𝑖𝜣 dictates the decay because it 
becomes non0Hermitian and breaks the T and CP symmetries in wick interaction.   

By quantization of the gauge 𝛬  (𝑡, 𝒓) or e2 c (t, r), which leads to the discrete value of the rest mass through  
must be a periodic function of the fundamental frequency related to the rest mass, and                  in the Fourier domainmust 
be an integer multiple of the fundamental wave vector or momentum 𝑃𝑘which is coupled to 𝑼𝑘. Therefore, for the most 
fundamental frequency mode in terms of the electron’s mass, we obtainthe following equation involving integers
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The above scalar gauge with local transformation represents U(1) symmetry with one degree of 

freedom. The U(1) plays an important role in QED and the Standard Model that is based on the  

𝑈𝑈(1) × 𝑆𝑆𝑈𝑈(2) × 𝑆𝑆𝑈𝑈(3) symmetry.   We shall generalize this gauge function to a hypercomplex 

gauge using higher dimensional octonions and sedenions.  

  

C.  Generalized Dirac equation and hypercomplex gauge based on octonion algebra 

In QED, the Lorentz gauge and Dirac equation assume a point-like electron, which is 

invariant under gauge transformation [12]. However, if the electron is not a point-like particle but 

has a finite size, the U(1) gauge symmetry would be broken.  As an alternative to Dirac’s theory, 

this generalized Dirac equation with octonions assumes a finite size and an internal structure for 

the electron. Therefore, the electron could acquire a rest mass. To describe the quantum dynamics 

of a particle in the physical world, in addition to the length and time unit in 4D spacetime, a 

particle’s mass or energy is required for a full physical description. That is why in Einstein’s mass-

energy relation  𝐸𝐸2 = 𝑐𝑐2(𝑃𝑃1
2 + 𝑃𝑃1

2 + 𝑃𝑃2
2 + 𝑃𝑃3

2 + 𝑚𝑚0
2𝑐𝑐2) for a relativistic particle, the mass plays like 

an extra dimension in this Pythagorean formula for a 4D orthogonal structure consisting of three 

dimensions in momentum space and an extra dimension in mass.  Therefore, for a quantized 

spacetime lattice, mass should be treated as an operator as the 5th dimension, in addition to the 4D 

spacetime. In the quantized spacetime lattice, the continuous differential wave equation becomes 

a discrete difference equation involving an equation involving integers in terms of the fundamental 

lattice units.  With the quantized spacetime, our generalized gauge represents a gauge for the 

symmetry-broken Lorentz gauge so that the bare electron can acquire a rest mass. Physically 

speaking, those four octonion operators {𝜣𝜣, 𝑼𝑼1, 𝑼𝑼2, 𝑼𝑼3} do not commute with the quaternion 

operators  {𝜞𝜞1, 𝜞𝜞2, 𝜞𝜞3} which describe the Lorentz invariant Minkowski 4D spacetime.  The spinor 
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{𝜞𝜞1, 𝜞𝜞2, 𝜞𝜞3}   by 𝜣𝜣, where 𝜣𝜣  is a pseudo-temporal operator that dictates the intrinsic rest mass of 

the particle. The complexified operator 𝑖𝑖𝜣𝜣  dictates the decay because it becomes non0Hermitian 

and breaks the T and CP symmetries in wick interaction.   
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 By quantization of the gauge 𝛬𝛬(𝑡𝑡, 𝒓𝒓)  or   ( )r,tce 2 , which leads to the discrete value 

of the rest mass through 𝑒𝑒𝑖𝑖√ℏ𝑐𝑐 𝑒𝑒2⁄ 𝛬𝛬(𝑡𝑡,𝒓𝒓) must be a  periodic function of the fundamental frequency 

related to the rest mass,  and  √ℏ𝑐𝑐 𝑒𝑒2⁄ 𝛬𝛬   in the Fourier domain must be an integer multiple of the 

fundamental wave vector or momentum 𝑃𝑃𝑘𝑘which is coupled to 𝑼𝑼𝑘𝑘. Therefore, for the most 

fundamental frequency mode in terms of the electron’s mass, we obtain the following equation 

involving integers 

 

 ( ) .IΘUUU =+++ 0332211
2 anaaacei        (3A) 

 

Because  𝑼𝑼𝑘𝑘
2 = −𝑰𝑰 and {𝑼𝑼𝑗𝑗,𝑼𝑼𝑘𝑘} = −2𝛿𝛿𝑖𝑖𝑗𝑗,  the square of the above equation becomes  

.22
3

2
3

2
2

2
1 ecaaaa =+++         (3B) 

where 2ec   must be a prime number for the fundamental model and not a harmonic of the the 

most fundament mode. According to our previous work [16], we have shown this approach of 

quantizing the Lorentz gauge, we can derive the fine structure constant .13712 =ce    

 As mentioned earlier, unlike the QED that assumes the gauge is a scalar function with 

U(1) symmetry, in our model with a gauge represented by{𝜣𝜣,𝑼𝑼1,𝑼𝑼2,𝑼𝑼3} of the octonion algebra. 

The symmetry-breaking for the octonion gauge leads an electron to acquire an effective rest 

mass.   Because quantization of the gauge is equivalent to quantizing the effective mass, we 

could directly deal with the Hamiltonian H.  We define 𝐇𝐇|𝜳𝜳⟩ ≡ −𝑖𝑖𝑖𝑖|𝜳𝜳⟩ and for a relativistic 

electron with  0mP kk k ΘUH +=   in the natural unit,  one obtains 𝑖𝑖2|𝜳𝜳⟩ = −𝐇𝐇𝟐𝟐|𝜳𝜳⟩ ,  and  

2
0

22 mPE k k +=    which is Einstein’s mass-energy relation. According to this octonion 

model, the generalized Dirac equation contains two parts, an exterior and an internal spacetime 

for the gauge that governs the internal dynamics for an electron to acquire an effective rest mass. 

We consider 
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Because 𝑼2𝑘= −𝑰 and {𝑼𝑗, 𝑼𝑘} = −2𝛿𝑖𝑗, the square of the above equation becomes 

Where c / e2 must be a prime number for the fundamental model and not a harmonic of the the most fundament mode. 
According to our previous work, we have shown this approach of quantizing the Lorentz gauge, we can derive the fine 
structure constant e2  c=1137 [16].
 
As mentioned earlier, unlike the QED that assumes the gauge is a scalar function with U (1) symmetry, in our model 
with a gauge represented by {𝜣, 𝑼1,  𝑼2,  𝑼3} of the octonion algebra. The symmetry-breaking for the octonion gauge 
leads an electron to acquire an effective rest mass. Because quantization of the gauge is equivalent to quantizing the 
effective mass, we could directly deal with the Hamiltonian H.  We define 𝐇|𝜳⟩ ≡ −𝑖𝐸|𝜳⟩  and for a relativistic electron 
with H=k PkUk +Θm0 in the natural unit, one obtains 𝐸2|𝜳⟩  = −𝐇𝟐|𝜳⟩ , and E2 = k Pk2 + m02 which is Einstein’s mass-
energy relation.According to this octonion model, the generalized Dirac equation contains two parts, an exterior and an 
internal spacetime for the gauge that governs the internal dynamics for an electron to acquire an effective rest mass. 
We consider 

With quantized mass and internal spacetime and the rest mass representing the fundamental mode, one obtains the 
following constraint equations for the relevant integers 

As shown in Table 3, based on the above equation of the constraints, we obtained 
c/ e2 =137, a0 =4, a4 =11, a1=2, a2 =6, a3=9, leading to a theoretical value for the fine structure constant  of 1/137. 
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With quantized mass and internal spacetime and the rest mass representing the fundamental mode, 

one obtains the following constraint equations for the relevant integers 
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As shown in Table 3, based on the above equation of the constraints, we obtained 

,,,,,, 962114137 32140
2 ====== aaaaaec leading to a theoretical value for the fine structure 

constant   of 1/137.  

 

Table 4. Constraints on integer equations according to the octonion lattice model. 

2ec  𝐏𝐏 = 𝑃𝑃1𝐔𝐔1 + 𝑃𝑃2𝐔𝐔2
+ 𝑃𝑃3𝐔𝐔3 

𝛺𝛺0𝚯𝚯 𝑎𝑎0, 𝑎𝑎4: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎0: 𝑝𝑝𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖 > 1 

2ec = 𝑎𝑎422 + 𝑎𝑎02 

𝑎𝑎0, 𝑎𝑎4: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑇𝑇𝑝𝑝𝑖𝑖: {𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3} 
𝑎𝑎4

2 = 𝑎𝑎1
2 + 𝑎𝑎2

2 + 𝑎𝑎3
2 

𝑎𝑎0
2 |𝑝𝑝𝑚𝑚𝑚𝑚(𝑅𝑅 𝑎𝑎0⁄ , 𝜋𝜋)| < 10−2 

𝑅𝑅 = ∏ 𝑎𝑎𝑘𝑘
3
 𝑘𝑘=0 ,   𝑎𝑎0 = ∑ 𝑎𝑎𝑘𝑘

23
𝑘𝑘=0   

 

 

D.  Generalized Dirac equation and hypercomplex gauge based on sedenion algebra 

To improve the theoretical prediction of the fine-structure constant to match the 

experimental value with am unprurient high accuracy, we extend the 8D octonion model for the 

gauge or the rest mass to another level up of the hyper-complex algebra, i.e., the 16D sedenion 

model. Using the Cayley-Dickson construction scheme as shown in Table 3, one can construct the 

16-element sedenions from octonions. There are fifteen anti-commutative and non-associative 

imaginary basis elements, and their multiplication table is shown in Table 5 [9]. 
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imaginary basis elements, and their multiplication table is shown in Table 5 [9]. 
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With quantized mass and internal spacetime and the rest mass representing the fundamental mode, 

one obtains the following constraint equations for the relevant integers 
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As shown in Table 3, based on the above equation of the constraints, we obtained 

,,,,,, 962114137 32140
2 ====== aaaaaec leading to a theoretical value for the fine structure 

constant   of 1/137.  

 

Table 4. Constraints on integer equations according to the octonion lattice model. 
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To improve the theoretical prediction of the fine-structure constant to match the 

experimental value with am unprurient high accuracy, we extend the 8D octonion model for the 

gauge or the rest mass to another level up of the hyper-complex algebra, i.e., the 16D sedenion 

model. Using the Cayley-Dickson construction scheme as shown in Table 3, one can construct the 

16-element sedenions from octonions. There are fifteen anti-commutative and non-associative 

imaginary basis elements, and their multiplication table is shown in Table 5 [9]. 
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Table 5. Multiplication table of sixteen sedenion basis elements of I, 1, 2,  3, , U1, U2, U3, , 

V1, V2, V3, , W1,W2, and W3.  

I 1 2  3 1 U1 U2 U3 2 V1 V2 V3 3 W1 W2 W3 

1 -I  3 -2 U1 -1 - U3 U2 V1 -2 - V3 V2 -W1 3 W3 -W2 

2 - 3 -I 1 U2 U3 -1 - U1 V2 V3 -2 - V1 -W2 -W3 3 W1 

 3 2 -1 -I U3 - U2 U1 -1 V3 - V2 V1 -2 -W3 W2 -W1 3 

1 -U1 - U2 -U3 -I 1 2  3 3 W1 W2 W3 −−2 --V1 -V2 -V3 

U1 1 - U3 U2 −−1 -I - 3 2 W1 −−3 W3 -W2 V1 −−2 V3 -V2 

U2 U3 1 - U1 −−2  3 -I -1 W2 -W3 −−3 W1 V2 -V3 −−2 V1 

U3 - U2 U1 1 −− 3 -2 1 -I W3 W2 -W1 −−3 V3 V2 -V1 −−2 

2 -V1 -V2 -V3 -3 -W1 -W2 -W3 -I 1 2  3 1 U1 U2 U3 

V1 2 -V3 V2 -W1 3 W3 -W2 -1 -I −− 3 2 -U1 1 U3 -U2 

V2 V3 2 -V1 -W2 -W3 3 W1 -2  3 -I -
−−1 

-U2 -U3 1 U1 

V3 - V2 V1 2 -W3 W2 -W1 3 - 3 −−2 1 -I -U3 U2 -U1 1 

3 W1 W2 W3 2 -V1 -V2 -V3 −−
1 

U1 U2 U3 -I −−1 −−2 −− 3 

W1 -3 W3 - W2 V1 2 V3 -V2 -U1 -1 U3 -U2 1 -I  3 −−2 

W2 -W3 -3 W1 V2 -V3 2 V1 -U2 -U3 -1 U1 2 −− 3 -I 1 

W3 W2 -W1 -3 V3 V2 -V1 2 -U3 U2 -U1 -1  3 2 −−1 -I 

 

The above table display one quaternion for the 4D exterior spacetime and three 4-element sets, 

Uk, Vk and Wk, for the 12D internal spacetime  with each quartet containing own spinor triplet and 

a pseudo time operators  The sedenion algebra has a richer structure, it contains three sets of sub-

octonion algebra with a commonly shared the same quaternion algebra of   {𝐈𝐈, 𝚪𝚪1, 𝚪𝚪2, 𝚪𝚪3}, which 

represents the exterior spacetime, The inner spacetime consists of three quaternion-like quartets 

{𝚯𝚯1, 𝐔𝐔1, 𝐔𝐔2, 𝐔𝐔3}, {𝚯𝚯2, 𝐕𝐕1, 𝐕𝐕2, 𝐕𝐕3}   and  {𝚯𝚯3,𝐖𝐖1,𝐖𝐖2,𝐖𝐖3}  with each quartet contains a cyclic spinor 
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Uk, Vk and Wk, for the 12D internal spacetime  with each quartet containing own spinor triplet and 

a pseudo time operators  The sedenion algebra has a richer structure, it contains three sets of sub-

octonion algebra with a commonly shared the same quaternion algebra of   {𝐈𝐈, 𝚪𝚪1, 𝚪𝚪2, 𝚪𝚪3}, which 

represents the exterior spacetime, The inner spacetime consists of three quaternion-like quartets 
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Figure 2: The Schematic Diagram Shows that the Sedenion Algebra Contains an Identity Element and Five 
Cyclic Spinor Triplet Sets  

Table 5: Multiplication Table Of Sixteen Sedenion Basis Elements Of I, 𝜞1, 𝜞2, 𝜞 3, 𝜣, U1, U2,U3, 𝜣, V1, V2, V3, 
𝜣, W1, W2, And W3  

The above table display one quaternion for the 4D exterior spacetime and three 4-element sets, Uk, Vk and Wk, for the 
12D internal spacetime  with each quartet containing own spinor triplet and a pseudo time operators  The sedenion 
algebra has a richer structure, it contains three sets of suboctonion algebra with a commonly shared the same quaternion 
algebra of   {𝐈, 𝚪1,  𝚪2,  𝚪3}, which represents the exterior spacetime, The inner spacetime consists of three quaternion-like 
quartets {𝚯1,  𝐔1,  𝐔2,  𝐔3}, {𝚯2,  𝐕1,  𝐕2,  𝐕3}   and  {𝚯3,  𝐖1,  𝐖2,  𝐖3}  with each quartet contains a cyclic spinor triplet. These 
three quartets in the sedenion algebra e due to the split of the quartet in the octonion algebra represent the internal 
spacetime and play a key role in three generations of leptons and quarks.  To derive the fine-structure constant, the 12 
basis elements of the sedenion algebra will be used to represent the generalized gauge operators, equivalently, the rest 
mass operator. There are three internal quartets for the internal spacetime as illustrated in Fig. 1, there are four cyclic 
sponsor triplets represented by four sets of SU (2) generators as shown in Fig. 2. Therefore, there are 12 degrees of 
freedom in the electron’s internal spacetime, i.e., three quaternion-like quartets and three cyclic spinor triplets, and a 
total of 12 anti-commutative operators to represent the internal spacetime.  
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Figure 2. The schematic diagram shows that the sedenion algebra contains an identity element and 

five cyclic spinor triplet sets.  I and k represent the exterior spacetime, while k represents pseudo 

time spinor triplet, Uk, Vk, and Wk represent the spatial spinor triplets in the internal spacetime.  

The internal spacetime consists of four sets of the SU(2) spinor triplets. 
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𝐌𝐌 = 𝚯𝚯 + 𝐏𝐏

𝚯𝚯 ≡ ∑ 𝜃𝜃𝑘𝑘𝚯𝚯𝑘𝑘

3

𝑘𝑘=1
, 𝐏𝐏 ≡ ∑ 𝐏𝐏k

3

𝑘𝑘=1

𝑷𝑷1 ≡ ∑ 𝑃𝑃1,𝑘𝑘𝐔𝐔𝑘𝑘,
3

𝑘𝑘=1
𝐏𝐏2 ≡ ∑ 𝑃𝑃2,𝑘𝑘𝐕𝐕𝑘𝑘

3

𝑘𝑘=1
, 𝐏𝐏3 ≡ ∑ 𝑃𝑃3,𝑘𝑘𝐖𝐖𝑘𝑘

3

𝑘𝑘=1

− 0m
2

|𝛹𝛹⟩ = 𝐌𝐌2|𝛹𝛹⟩ = (𝚯𝚯2 + 𝐏𝐏2)|𝛹𝛹⟩ = − (∑ 𝜃𝜃𝑘𝑘
2 + ∑ 𝑃𝑃𝑗𝑗,𝑘𝑘

2
3

𝑗𝑗,𝑘𝑘=1

3

𝑘𝑘=1
) |𝛹𝛹⟩,

𝐏𝐏1
2|𝛹𝛹⟩ = − ∑ 𝑃𝑃1,𝑘𝑘

2|𝛹𝛹⟩
3

𝑘𝑘=1
, 𝐏𝐏2

2|𝛹𝛹⟩ = − ∑ 𝑃𝑃2,𝑘𝑘
2|𝛹𝛹⟩

3

𝑘𝑘=1
, 𝐏𝐏3

2|𝛹𝛹⟩ = − ∑ 𝑃𝑃3,𝑘𝑘
2|𝛹𝛹⟩

3

𝑘𝑘=1

(5𝐴𝐴) 

As shown in Table 5, there are five cyclic spinor sets {𝚯𝚯1, 𝚯𝚯2, 𝚯𝚯3}, {𝐔𝐔1, 𝐔𝐔2, 𝐔𝐔3}, {𝐕𝐕1, 𝐕𝐕2, 𝐕𝐕3} ,  and  

{𝐖𝐖1, 𝐖𝐖2, 𝐖𝐖3}, which anti-commute with each other. From the above equation, one obtains 

 
𝑒𝑒𝑒𝑒𝑒𝑒(𝐦𝐦𝜏𝜏) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝜏𝜏) + (𝐦𝐦/𝜔𝜔) 𝑐𝑐𝑠𝑠𝑠𝑠(𝜔𝜔𝜏𝜏)

𝜔𝜔2 ≡ ∑ 𝜃𝜃𝑘𝑘
2

3

𝑘𝑘=1
+ ∑ 𝑃𝑃1,𝑘𝑘

2
3

𝑘𝑘=1
+ ∑ 𝑃𝑃2,𝑘𝑘

2
3

𝑘𝑘=1
+ ∑ 𝑃𝑃3,𝑘𝑘

2
3

𝑘𝑘=1

(5𝐵𝐵) 

The square-sum relation above represents the Pythagorean rule for the square of the rest mass 

energy of the electron. 

 According to the sedenion model, twelve basis elements represent the internal degrees of 

freedom for the gauge field to describe the rest mass. By mass quantization, the masses are not 

continuous but discrete, and the fundamental model frequency corresponds to a specific prime 

number. By imposing gauge quantization, or equivalently mass quantization, like the octonion 

model, we extend the criteria to twelve integers. After an extensive search, we found solutions 

where the prime decomposition of the integers satisfies the constraints imposed by the sedenion 

model. The resulting fine structure constant, derived from these quantized values, matches the 

experimental value remarkably well with 10-12 deviation. According to Eq. (5A) and following 

similar logical reasoning about gauge or mass quantization protocols: 1) 𝐦𝐦 = 𝚯𝚯 + 𝐏𝐏  is 

represented by an integer equation with a prime for both  𝐦𝐦 and P; 2) 𝚯𝚯 = ∑ 𝜃𝜃𝑘𝑘𝚯𝚯𝑘𝑘𝑘𝑘  represented 

by an integer triplet, 3)  𝐏𝐏𝑘𝑘 = 𝑃𝑃1,𝑘𝑘𝐔𝐔𝟏𝟏 + 𝑃𝑃2,𝑘𝑘𝐕𝐕2 + 𝑃𝑃3,𝑘𝑘𝐖𝐖𝐾𝐾, which are represented by integer triplets. 

In Table 6, we summarized the criteria for allowable 12 integers.  
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After an extensive computer searching for 12 integers that satisfy the above constraints on prime, triplet or doublet, 
we have identified a prime and decompositions into a sum over the squares of 12 non-zero integers as shown in Table 
7. After search efforts using a computer, although we have found several Pythagorean primes that satisfy some of the 
criteria, such as 137035999201, 137035999209569, etc., most do not meet all requirements. Listed in Table 6 is the 
allowed set of integer square decomposition from the Pythagorean prime.  

Table 6: Quantized Hyperfine Gauge For The Effective Rest Mass And Constraints On 12 Integers, 
Representing Four Triplets Of SU (2) Generators, Representing          Su (2) Algebra 

As shown in Table 5, there are five cyclic spinor sets {𝚯1,  𝚯2,  𝚯3}, {𝐔1,  𝐔2,  𝐔3},  {𝐕1,  𝐕2,  𝐕3},  and  {𝐖1,  𝐖2,  𝐖3}, which anti-
commute with each other. From the above equation, one obtains 

The square-sum relation above represents the Pythagorean rule for the square of the rest mass energy of the electron. 

According to the sedenion model, twelve basis elements represent the internal degrees of freedom for the gauge field to 
describe the rest mass. By mass quantization, the masses are not continuous but discrete, and the fundamental model 
frequency corresponds to a specific prime number. By imposing gauge quantization, or equivalently mass quantization, 
like the octonion model, we extend the criteria to twelve integers. After an extensive search, we found solutions where 
the prime decomposition of the integers satisfies the constraints imposed by the sedenion model. The resulting fine 
structure constant, derived from these quantized values, matches the experimental value remarkably well with 10-12 
deviation. According to Eq. (5A) and following similar logical reasoning about gauge or mass quantization protocols: 1) 
𝐦 = 𝚯 +  𝐏 is represented by an integer equation with a prime for both 𝐦  and P; 2) 𝚯 = ∑𝑘𝜃𝑘𝚯𝑘represented by an integer 
triplet, 3) 𝐏𝑘= 𝑃1, 𝑘𝐔𝟏+ 𝑃2, 𝑘𝐕2 + 𝑃3, 𝑘𝐖𝐾,  which are represented by integer triplets. 
In Table 6, we summarized the criteria for allowable 12 integers. 
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The square-sum relation above represents the Pythagorean rule for the square of the rest mass 

energy of the electron. 

 According to the sedenion model, twelve basis elements represent the internal degrees of 

freedom for the gauge field to describe the rest mass. By mass quantization, the masses are not 

continuous but discrete, and the fundamental model frequency corresponds to a specific prime 

number. By imposing gauge quantization, or equivalently mass quantization, like the octonion 

model, we extend the criteria to twelve integers. After an extensive search, we found solutions 

where the prime decomposition of the integers satisfies the constraints imposed by the sedenion 
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Table 6. Quantized hyperfine gauge for the effective rest mass and constraints on 12 integers, 

representing four triplets of SU(2) generators,  representing (su(2) ⊕ su(2) ⊕ su(2)) × 𝑆𝑆3 ⊕

su(2) algebra. 

𝑴𝑴 = 𝑷𝑷 + 𝚯𝚯 

𝜁𝜁 = 𝑃𝑃22 + 𝜃𝜃2 
 
{𝜁𝜁: 𝑃𝑃, 𝜃𝜃} 
𝜁𝜁, 𝑃𝑃: 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
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θ2 = 
θ1

2 + θ2
2 + θ3
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|𝑝𝑝𝑜𝑜𝑚𝑚(𝑅𝑅/𝜁𝜁, 𝜋𝜋)| < 10−2 

𝑅𝑅 = 1
𝜁𝜁 ( ∏ 𝑃𝑃𝑗𝑗,𝑘𝑘

3

𝑗𝑗,𝑘𝑘=1
) (∏ 𝜃𝜃𝑘𝑘
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𝑘𝑘=1
) 

𝜁𝜁 = ∑ 𝑃𝑃𝑗𝑗,𝑘𝑘
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3

𝑗𝑗,𝑘𝑘=1
+ ∑ 𝜃𝜃𝑘𝑘
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3

𝑘𝑘=1
 

 

 After an extensive computer searching for 12 integers that satisfy the above constraints on 

prime, triplet or doublet, we have identified a prime and decompositions into a sum over the 

squares of 12 non-zero integers as shown in Table 7. After search efforts using a computer, 

although we have found several Pythagorean primes that satisfy some of the criteria, such as 

137035999201, 137035999209569, etc., most do not meet all requirements. Listed in Table 6 is 

the allowed set of integer square decomposition from the Pythagorean prime.  
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𝜁𝜁 = 𝑃𝑃2 + 𝜃𝜃2 

𝑃𝑃 = 2577851 P  : prime; 

{𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3}: 1𝑝𝑝𝑜𝑜 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑜𝑜  

𝑃𝑃2=𝑃𝑃1
2 + 𝑃𝑃2

2 + 𝑃𝑃3
2 

 𝜃𝜃 = 11418874  

Triplet 

𝜃𝜃2=𝜃𝜃1
2 + 𝜃𝜃2

2 + 𝜃𝜃3
2 
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although we have found several Pythagorean primes that satisfy some of the criteria, such as 

137035999201, 137035999209569, etc., most do not meet all requirements. Listed in Table 6 is 

the allowed set of integer square decomposition from the Pythagorean prime.  

 

Table 7.  List of the Pythagorean prime and 12 components, representing 12 elements of 

(su(2) ⊕ su(2) ⊕ su(2)) × 𝑆𝑆3 ⊕ su(2) algebra, according to the sedenion model    

𝜁𝜁 =137035999206077 

(Pythagorean prime) 

𝜁𝜁 = 𝑃𝑃2 + 𝜃𝜃2 

𝑃𝑃 = 2577851 P  : prime; 

{𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3}: 1𝑝𝑝𝑜𝑜 − 𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑙𝑙𝑝𝑝𝑜𝑜  

𝑃𝑃2=𝑃𝑃1
2 + 𝑃𝑃2

2 + 𝑃𝑃3
2 

 𝜃𝜃 = 11418874  

Triplet 

𝜃𝜃2=𝜃𝜃1
2 + 𝜃𝜃2

2 + 𝜃𝜃3
2 

 

In the above table, the decomposition of the Pythagorean prime   yields a prime P and an even integer Q.  P square can 
be decomposed into a triplet, and each can be further decomposed into its own triplet. Therefore, P can be decomposed 
into three tiers of triplets, plus the decomposition of Q square into a triplet, one obtains 𝐬𝐮 (𝟐) ⊕𝐬𝐮 (𝟐) ⊕𝐬𝐮 (𝟐) ⊕𝐬𝐮  
(𝟐) algebra, which is applicable to leptons and not quarks.   

Because in the equations involving only integers for quantized internal spacetime, we reduce mass, energy, and 
momentum, in units of 𝛺0and 𝛺𝑆, the fundamental frequency for the octonion and sedenion model, respectively, we 
need to relate these dimensionless integers to physical quantities.  According to Table 6 and Eq. (5B), one has 𝜔2⁄𝛺𝑆2

 
= = 137035999206077, By comparing it to the result from the octonion model with 𝑚02⁄𝛺02 = 137, the fundamental 
mass         Because these primes numbers of 137 for the octonion model 
and for the sedenion model are dimensionless numbers, to relate them to physical quantity one makes a link of 137 to 
the electron mass. Thus, 𝛺𝑆 a fundamental mass energy of about 0.5 eV, could be related to the mass of neutrinos. One 
can 

scale down the integers in Table 3 by a factor of 𝛺𝑆⁄𝛺for all decomposed components, we obtain, according to our 
sedenion approach, the theoretical value of 1⁄𝛼 = 137.035999206077,which matches the experimental value of 
137.035999206 with an unprecedented small discrepancy of ~ 10-12.  

Conclusions 
In this work, we explore the rich mathematical structures of hypercomplex numbers and their applications in physics. 
Using the Cayley-Dickson construction, we extend real numbers to complex numbers, then systematically build higher-
dimensional hypercomplex systems— quaternions, octonions, and sedenions. We first examine quaternion applications 
in electromagnetism, special relativity, and massless relativistic fermions. Next, we show that the Dirac equation, 
traditionally described with four anti-commutative gamma matrices, can also be formulated using five of the seven 
anti-commutative imaginary operators in octonion algebra. We then propose a generalized Dirac equation by extending 
the conventional Lorentz scalar gauge to quaternionic, octonionic, and sedenionic gauges. This hypercomplex gauge 
naturally breaks Lorentz symmetry, leading to the mass generation for electrons and other particles. Through gauge 
quantization, we extend the scalar gauge to a quaternion gauge, resulting in integer equations (Table 4) that correspond 
to the quantization of effective mass via internal structural dynamics represented by octonionic anti-commutative 
operators. As shown in Sec. 2.3, we derive the inverse fine-structure constant as 137—a Pythagorean prime satisfying 
all constraints in Table 4. An extensive computational search for primes below 105 confirms that 137 is the only viable 
solution. 

We extend the octonion model to the sedenion model to improve the predicted value with the experiments.  We 
show that on Sec. 2.4, according to the sedenion algebra, it contains four sets of SU (2) spinor triplets and a total of 
12 degrees of freedom for the internal dynamics.  This sedenion model as imposed by Eq. (6A). We derived a set of 
constraints on the Pythagorean prime and its decomposition to a set of integer squares, as shown in Table 6.  After 
extensive computer screening, of possible solutions, we have found a Pythagorean prime, and its decomposed integer 
squares as listed in Table 7. According to our analysis, we obtain the theoretical value of 1⁄𝛼 = 137.035999206077,which 
matches the experimental value of 137.035999206 with remarkable accuracy with only ~ 10-12 discrepancies.  In our 
other work, we have found a tiny variation in the predicted value with 1⁄𝛼 = 137.03599920605017 for u (1) ⊕ su(2) ⊕ 
su(3), instead of (su(2) ⊕ su(2) ⊕ su(2)) × 𝑆3 ⊕ su(3) considered here. There is a small difference occurring at the 
11th decimal digit. The difference might be related to the difference in the symmetry group, but such a small difference 
has no significant influence.   

In summary, using hypercomplex algebra, we extend Dirac equations for the electron with quantized gauge fields. This 
approach allows us to derive the fine-structure constant with unprecedented accuracy theoretically. As a fundamental 
parameter in electromagnetism, it governs photonics, chemical bonding, molecular structures, and material properties. 
Understanding its origin deepens our insight into the interactions between photons and charged particles. In a related 
study, we also uncover intriguing links between the fine-structure constant and the mass ratios of electrons, leptons, 
and quarks, suggesting possible connections between electromagnetism and the other fundamental forces, warranting 
further investigation. Until now, there is no known theoretical work that could explain the origin of the fine structure 
constant, predict its value and explain why this constant is dimensionless Therefore, we think our approach in combining 
hypercomplex algebra and spacetime quantization can accomplish such goals.  
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𝑃𝑃1,𝑘𝑘 = {1,4,8} 
𝑃𝑃2,𝑘𝑘, = {8, 123966, 706992} 
𝑃𝑃3,𝑘𝑘 = {14, 214096, 2466632} 

𝜃𝜃𝑘𝑘={13360, 847299, 11378477} 
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even integer Q.  P square can be decomposed into a triplet, and each can be further decomposed 

into its own triplet. Therefore, P can be decomposed into three tiers of triplets, plus the 
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which is applicable to leptons and not quarks.   

Because in the equations involving only integers for quantized internal spacetime, we 

reduce mass, energy, and momentum, in units of 𝛺𝛺0 and  𝛺𝛺𝑆𝑆,  the fundamental frequency for the 

octonion and sedenion model, respectively, we need to relate these dimensionless integers to 

physical quantities.  According to Table 6 and Eq. (5B), one has 𝜔𝜔2 𝛺𝛺𝑆𝑆⁄ 2 = 𝜁𝜁 =

137035999206077,  By comparing it to the result from the octonion model with 𝑚𝑚0
2 𝛺𝛺0⁄ 2 =

137, the fundamental mass 𝑚𝑚0
2 𝛺𝛺𝑆𝑆⁄ 2 = 𝜁𝜁, 𝛺𝛺𝑆𝑆 𝛺𝛺0⁄ = √137 𝜁𝜁⁄ ≈ 1.00013 × 10−6. Because these 

primes numbers of 137 for the octonion model and  𝜁𝜁for the sedenion model are dimensionless 

numbers, to relate them to physical quantity one makes a link of 137 to the electron mass. Thus, 

𝛺𝛺𝑆𝑆 a fundamental mass energy of about 0.5 eV, could be related to the mass of neutrinos. One can 

scale down the integers in Table 3 by a factor of 𝛺𝛺𝑆𝑆 𝛺𝛺0⁄ = √137 𝜁𝜁⁄ ≈ 1.000 × 10−6 for all 

decomposed components, we obtain, according to our sedenion approach, the theoretical value of 

1 𝛼𝛼⁄ = 137.035999206077, which matches the experimental value of 137.035999206 with an 

unprecedented small discrepancy of ~ 10-12.  

III. Conclusions 
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We have recently extended the sedenion algebra and hypercomplex gauge theory k to explain the rise of three generations 
of leptons and quarks, the masses of these fermions, and the mass oscillations among three flavor neutrinos. Our 
proposed route offers an alternative beyond the Standard Model description, and could explain some unsolved problems 
in particle physics, unlike twistor theory, string theory, and loop quantum gravity. We believe such an approach could 
potentially lead to quantum gravity and the grand unification theory (GUT) of all four forces in nature.  More details on 
our further development will be published elsewhere.  
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