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Abstract 
Quantum computing (QC) is the era of the mechanisms that quantum solves complex problems faster than classical 
computers (CCs). Today, there are more opportunities for the public and private sectors to use high-value quantum 
solutions. QC relies on quantum phenomena to calculate incredible speeds and set for significant expansion. Quantum 
computers, QC-based Internet of Things (IoT), and communication devices to create, process, and transmit quantum 
states and entanglement are anticipated to enhance society’s quantum software. In this context, this paper introduces 
the Quantum Software Testing (QST) approach with Machine Learning (ML) techniques integrated into the Quantum 
Software Testing Life Cycle (QSTLC). The proposed Quantum Machine Learning Testing (QMLT) exploits ML techniques 
at critical stages of the QST to enhance testing efficiency, accuracy, and adaptability. Finally, the proposed automated 
test report generation, summarizing, and knowledge extraction technique facilitates comprehensive documentation and 
knowledge transfer.
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Introduction
The Quantum Computing (QC) revolution starts in the 21st century. In the innovation technology of the computing era, 
Quantum Machines (QM) compute the data and perform various tasks faster than the binary digits of classical electric 
computing [1]. Quantum software development (QSD) involves designing quantum programs (QPs), using quantum 
applications, quantum software testing (QST), and maintaining quantum software (QS). QSD evolves into incremental, 
iterative, and agile software engineering, just as classical software engineering [2]. SDLC is required to develop QS 
encompassing the various QSD phases and build reliable software. QS includes communication, planning, modeling, 
construction, testing, deployment, and maintenance. The testing phase includes the test plan, test case development, 
execution, result analysis, tracking, and status report generation. The QSD team was used to design a QS with the help 
of the procedures, tools, and approaches required.

In our work, we initially integrate Machine learning (ML) into the QSTLC within the QC environment [3]. We introduce 
a novel technique applied to ML algorithms to enhance and optimize the testing for QS. Significantly enhance the ML 
techniques for testing in QC that address the unique challenges of error correction and detection, noise characterization, 
verification, and validation quantum algorithms (QA) and systems [4]. Initially, ML algorithms can analyze quantum 
errors (QEs) and improve error detection and correction strategies in QE correction codes [5]. ML algorithms optimize the 
design and implementation of QE strategies to analyze error rate, quantum system parameters, and noise characteristics. 
For instance, optimize the error correction iterative to minimize the QE propagation and maximize the QA effectiveness 
[6]. QS suggests various contributes to improve the QC design and testing aspects.
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• The proposed QMLT performs faster error detection and trains on vast quantum operations and outcomes datasets.
• The QP specifications, previous test cases, and QMLT can generate new test cases that cover all QS requirements to 
ensure efficiency and reliability.
• The QMLT is applied to automatically optimize quantum circuits, construct them from past circuits, and improve 
performance.
• To compare various metrics with existing testing techniques, including CST using QMLT in a QST environment.

The remaining part of the paper is organized as follows. Section 2 describes the related works. Section 3 presents the 
technologies. Section 4 depicts the system model and design phases with illustrations. Performance comparisons of the 
QMLT are evaluated in Section 5, and concluding remarks are given in Section 6.

Background Work
In this section, we overview and analyze the QC environment, which means quantum characteristics, quantum computer 
processes related to the qubit, its state’s relevant changes, QEs, the nature of QS, quantum gates (QG), and quantum 
circuits [5-7]. The QC technology has particular potential for optimizing issues. The software testing technique for 
quality control differs from classical computing [8]. QC operates on a different mechanism and is well suited to solving 
computationally demanding societal and industrial issues.

QC includes drug discovery and vaccine development, finance optimization, portfolio management, and physics-related 
complex simulations in the medical field. The success of QC significantly impacts daily lives and replaces the majority 
of industries in a specific field. QS is Required to support a QS stack comprising the operating systems, compilers, and 
programming languages [9]. The properties of QC, such as superposition and entanglement, cannot be used in QS 
applications. Furthermore, the QAs require coding QPs because of the entirely different programming mindset based on 
quantum ideas. The software developers face several difficulties.

Unique Quantum Characteristics
A sensitive information-carrying unit in quantum computers is the qubit, which can be shown as the QM generation of a 
bit used in classical computing. The qubit is a 2-dimensional quantum state space. The probability of the current state 
is a superposition.

Superposition (ψ)
Quantum bits or qubits exist in different states simultaneously, and the superposition is identified [10]. A qubit state is 
mathematically expressed as:
|ψ⟩ = α|0⟩ + β |1⟩
where |α|2 + |β|2 = 1, and |0⟩ and |1⟩ are the basis states.

Entanglement (Ψ)
The entangled is a qubit. One qubit’s state depends on another’s state, But it is spatially separated. An entangled state 
is mathematically represented as:

 
Quantum Parallelism
• QAs process with multiple inputs simultaneously and faster computations exploiting in parallel. 
• QGs and unitary transformation are used to represent quantum parallelism mathematically.

Quantum Error Correction
Quantum Error Correction Code (QECC)
QECC is  [7,1,3] Steane code protected quantum information from errors [11-17]. The [7,1,3] Steane code mathematically 
corrects up to one QE or arbitrary phase error using seven qubits.

Validation of Quantum Properties
Quantum Coherence (ρ)
The coherence defines the continuity of the phase relation between quantum states. Coherence is mathematically 
computed using the density parameters represented as ρ, which are evaluated based on the Schrodinger equation:
 

Quantum Entanglement Entropy (S)
The entropy measures the degree of entanglement between qubits in a quantum system. It mathematically computes 
by using the Von Neumann formula:

S = −Tr(ρA logρA)
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QAs require coding QPs because of the entirely different programming mindset based
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2.1 Unique Quantum Characteristics

A sensitive information-carrying unit in quantum computers is the qubit, which can
be shown as the QM generation of a bit used in classical computing. The qubit
is a 2-dimensional quantum state space. The probability of the current state is a
superposition.

2.1.1 Superposition (ψ)

Quantum bits or qubits exist in different states simultaneously, and the superposition
is identified[10]. A qubit state is mathematically expressed as:

|ψ⟩ = α |0⟩+ β |1⟩

where |α|2 + |β|2 = 1, and |0⟩ and |1⟩ are the basis states.

2.1.2 Entanglement (Ψ)

The entangled is a qubit. One qubit’s state depends on another’s state, But it is
spatially separated. An entangled state is mathematically represented as:

|Ψ⟩ = 1√
2
(|00⟩+ |11⟩)

2.1.3 Quantum Parallelism

QAs process with multiple inputs simultaneously and faster computations exploiting
in parallel. QGs and unitary transformation are used to represent quantum parallelism
mathematically.

2.2 Quantum Error Correction

2.2.1 Quantum Error Correction Code (QECC)

QECC is [[7,1,3]] Steane code protected quantum information from errors[11]. The
[[7,1,3]] Steane code mathematically corrects up to one QE or arbitrary phase error
using seven qubits.
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2.3 Validation of Quantum Properties

2.3.1 Quantum Coherence (ρ)

The coherence defines the continuity of the phase relation between quantum states.
Coherence is mathematically computed using the density parameters represented as
ρ, which are evaluated based on the Schrodinger equation:

dρ

dt
= −i

1

ℏ
[H, ρ]

2.3.2 Quantum Entanglement Entropy (S)

The entropy measures the degree of entanglement between qubits in a quantum system.
It mathematically computes by using the Von Neumann formula:

S = −Tr(ρA log ρA)

where ρA is the density reduced matrix of the subsystem A.

2.4 Dynamic Nature of Quantum Systems

2.4.1 Time-Evolution Operator (U(t))

Quantum systems develop over time, consisting of the time evolution operator U(t),
which describes the quantum states’ unitary transformation. The operator U(t)
mathematically represented as the Schrodinger equation:

iℏ
d |ψ(t)⟩

dt
= H |ψ(t)⟩

2.5 Quantum Gates

In a digital circuit, a logic gate can change the state of a bit; similarly, a QG can
change the state of a qubit. A QG can transit a single quantum state (one input and
output) or multiple states (multiple inputs and outputs). With an equal number of
inputs and outputs in QG to perform a reverse transition, no information is lost in
QC. QGs are classified as having one input and output or multiple inputs and outputs.
First, the NoT Gate is used for one input, exchanging the coefficients of two primary
vectors. The second Hadamard Gate is also used for one input; the existing quantum

|ψ⟩ X X|ψ⟩

|ψ⟩ H H|ψ⟩
Fig. 1 Single-Qubit Gates Circuit

|ψ1⟩ |ψ1⟩

|ψ2⟩ |ψ1 ⊕ ψ2⟩
Fig. 2 Two-Qubit Gate Circuit

states decompose according to coefficients. The third, controlled-NOT Gate is used
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Figure 1: Single-Qubit Gates Circuit States 
Decompose According to Coefficients

Figure 2: Two-Qubit Gate Circuit

The third, controlled-NOT Gate is used for two inputs: the control qubit and the target qubit. These are various QGs 
involved in changing the state of a qubit in quantum systems.

Quantum Circuits
Quantum circuits are called quantum logic circuits commonly used in QC models, which are abstract representations of 
circuits that function on qubits. A group of Connected QGs are known as quantum circuits. The unitary transformation 
carried out by the quantum circuits determines the connection scheme, the quantity and kind of gates, and the physical 
structure of the quantum circuits. Quantum measurements can be used to read out the output of a quantum circuit.

Important Technologies
In this section, we discuss the details of QC technologies in automated smart cities and explore QC-based IoT applications 
in urban areas. Smart cars evolved significantly through QC technologies, optimizing road safety and fuel consumption 
via IoT integration. QC facilitates the development of self-driving vehicles, thus reducing accidents and congestion on 
intelligent roads. Competent healthcare undergoes a transformation shift with QC-based IoT devices [18]. These QCs 
are integral in shaping a more efficient, sustainable, and interconnected future across industries.

Automated Smart City
QC-based IoT applications based on quality control will be the fully connected and automated intelligent cities of the 
future. This complex system manages various aspects such as energy generation and distribution, waste management, 
pedestrian and vehicular traffic, electricity, and atmospheric regulation: increased urban population and the impact of 
climate change on ecosystems. The cities of the future could help their residents sustain a high quality of life amidst the 
challenges by increasing their populations.

Smart Cars
QC in Smart Cars Smart roads can eliminate road accidents, optimize consumption to improve efficiency, and integrate 
self-driving smart cars into QC-based IoT devices. QC-based IoTs reduce congestion and become feasible. QC proposed 
a cross-scenario autonomous driving solution for intelligent vehicles.

Smart Healthcare
Smart healthcare apps offer a better future for the sector. QC-based IoT devices incorporate wearable technologies, 
which can improve remote patient monitoring facilities with accurate and real-time health data. QC-based IoT devices 
can identify health issues early and take more preventive measures, as well as the potential for patient care and 
healthcare operations through QC and IoT. The capacity of QC can perform operations and reduce costs by optimizing 
healthcare logistics like supply chain management, hospital maintenance, and resource allocation.

Table 1 Quantum Software Development and Testing State of the Art Work.

Ref Authors&YearMethodology Contribution

[12] Khan, A.A.,
et al. (2023)

The proposed software architecture
for quantum computing systems is
in the systematic, complete review.

It mainly contributes to the archi-
tecture activities, modeling nota-
tions, and design patterns.

[7] Scheerer M.,
et al. (2023)

The proposal was related to quan-
tum software engineering activities.

It contributes to overall Quantum
Algorithms and Quantum Systems.

[13] Weder B., et
al. (2022)

Proposed an overview of the Quan-
tum software development life
cycle.

It contributes to the development
of quantum programs, classical pro-
grams.

[14] Coccia M.
(2022)

The proposal on quantum comput-
ing is to design a quantum ecosys-
tem for industrial activities.

It contributes to Quantum Com-
puting that can lay the foundation
for a quantum industry.

[15] Barrera A.G.,
et.al (2022)

The Quantum software is testing
current trends and emerging pro-
posals.

It contributes to Quantum Software
Testing based on mutation of soft-
ware, including the errors.

[2] Miranskyy A.
(2022)

This proposed method is related to
using quantum computers to speed
up the dynamic testing of software.

It contributes to Quantum Pro-
gramming for Software Engineer-
ing.

[11] Cavaliere
F.,et al.
(2020)

It was proposed on the security
implications of quantum computing
and cryptography.

It contributes to Quantum cryptog-
raphy relies instead on fundamental
quantum physics laws.

[16] Li G. et al.
(2020)

It was proposed for quantum test-
ing and debugging quantum pro-
grams.

It contributes to the testing and
debugging quantum programs on a
quantum computer.

[17] Sodhi B., et
al. (2021)

Using a quantum computing envi-
ronment was proposed to assess the
impact on quality attributes and
SDLC activities.

It contributes significantly to SDLC
activities.

[1] De Wolf R.
(2019)

It was proposed that complete
Quantum computing-related activ-
ities be provided in this.

It contributes a chapter on quan-
tum machine learning, and a final
chapter about quantum error cor-
rection. The main quantum algo-
rithms.

[4] Adedoyin A.
et al. (2018)

This proposal on quantum algo-
rithm implementation is from a
beginner’s point of view.

It mainly contributes to differ-
ent Quantum Algorithms relevant
information.

3.4 Smart Industry

QC in industrial automation will enable future factories to be effectively enhanced,
assuming control of various tasks now overseen by humans[14]. There are advantages
to economic and human labor for many purposes.
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Table 1: Quantum Software Development and Testing State of the Art Work

Smart Industry
QC in industrial automation will enable future factories to be effectively enhanced, assuming control of various tasks now 
overseen by humans [14]. There are advantages to economic and human labor for many purposes.

Machine Learning
ML allows computers to learn and reprogram themselves to improve the accuracy or efficiency of resulting tasks. 
Develop more powerful QCs that enable advanced machine learning technology. Ml can improve medicine, eradicate 
many diseases, provide therapy efficiently, and identify and cure diseases early. Moreover, machine learning is used 
in QCs to improve the quality of life unimaginably, as computers learn and develop to serve human goals of survival, 
harmony with the planet’s ecosystem, and effortless and luxurious lives.

Smart Grids
QC-based IoT connectivity eliminates the inefficiencies of distribution and supply systems in QC-based grids, reducing 
human impact on energy consumption while maintaining current living standards. Forecasting and quality-based 
modeling have been used in the twentieth century to improve living standards. Dramatically improve quality control 
by collecting and analyzing inputs from multiple complex systems and predicting their interactions. In this section, the 
critical technologies in QC will be explored.

System Model and Design Phases
This section discusses QC, which is usually involved in developing Quantum Software systems (QSS), a new-age software 
engineering paradigm. In Quantum Software Engineering (QSE) development, QP is easy to understand but simple and 
efficient [19]. QSE mainly focuses on technologies to reduce complexity and programming issues. The QSE chooses 
process activities that include communication, planning, modeling, construction, and deployment [20]. The QSD process 
starts with gathering requirements and analyzing them. QSD is the new procedure for designing QS, which follows the 
Quantum Software Development Life Cycle (QSDLC) and provides complete information about process activities [13, 
17].

Communication Phase
QSD communication involves requirements and analysis. In QC, gather requirements from customers. Here, the 
organization provides the QS with various requirements that help teams learn how to design these applications. After 
accepting the conditions from the customer, Then only all phases of work begin. The team prepares the required 
documents and then verifies whether everything is covered. Once every requirement was decided, an analysis was 
started on QS’s feasibility, time, and cost. They also analyze which technology is suitable for development and the 
testing challenges. The outcome of this phase is the gathering of services from QS.

Planning Phase
The result of the previous phase of collecting QS requirements and essential parts is as follows: This phase provides 
a rough architecture for QS, which consists of the entire design. High- and low-level documents introduced with the 
help of QuantumUnified Modeling Languages (QUML) are depicted. Includes the complete analysis the essential phase 
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converts the logical model to the physical model of QS. The modeling purpose uses the algorithms for QS, which include 
various functions and features compared to actual software systems [21]. The development team starts work with the 
help of the structure approved by the architects.

Modeling Phase
Design mainly concentrates on representing those aspects of the QS visualized for end users. Exposes building models 
that help developers, testers, and clients. Features and functionalities meet the requirements understood by clients. 
Figure 1 shows the QS phases. The first phase of QSD includes gathering requirements, preparing the design structure, 
and implementing, deploying, and maintaining it [12]. The QS related QPs that create and perform quantum operations 
rely on QGs. Quantum gates map qubits to their states, such as superposition and entanglement of qubits measure.

entire design. High- and low-level documents introduced with the help of Quantum-
Unified Modeling Languages (QUML) are depicted. Includes the complete analysis the
essential phase converts the logical model to the physical model of QS. The modeling
purpose uses the algorithms for QS, which include various functions and features
compared to actual software systems[21]. The development team starts work with the
help of the structure approved by the architects.

4.3 Modeling Phase

Design mainly concentrates on representing those aspects of the QS visualized for end
users. Exposes building models that help developers, testers, and clients. Features and
functionalities meet the requirements understood by clients. Figure 1 shows the QS
phases. The first phase of QSD includes gathering requirements, preparing the design
structure, and implementing, deploying, and maintaining it[12]. The QS related QPs
that create and perform quantum operations rely on QGs. Quantum gates map qubits
to their states, such as superposition and entanglement of qubits measure.
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Figure 3: Quantum Software Design (QSD) Process

Construction Phase
Coding Phase
Code implementation starts when developers use high-level programming languages, i.e., C#(Q#), C++(Scafflod), 
C(QCL), Python(ProjectQ et al.), Scala(Chisel-Q), F#(LIQUi|⟩), and Haskell (Quiper). Because these are very familiar to 
end users, they easily integrate into environments and are more supportive [22]. Every QS module is tested separately to 
ensure good operation. The source code is the output of this phase and deployment of Quantum Software Applications.

Testing Phase
In this phase, test plans are developed by gathering test requirements for QS. This includes documents, databases, 
and input/output specifications. Plan the test activities, which include planning, development, execution, result analysis, 
trashing, and report preparation.

• Test Plan: It specifies the overall QS working procedure. What are the input and output functionalities, as well as 
the non-functionalities.
• Test Development: Implements test scenarios and test cases for each requirement. Here are all the requirements 
covered.
• Test Execution: Perform execution for test cases after QS is received from the development team.
• Result Analysis: Reports generate requirements that meet or not. The whole QS is working as expected and is 
otherwise unmatched.
• Trashing: Tracking the unmatched functions re-designs the team. Findings are updated for the client, and every 
requirement is tested and retested.
• Status Reports: As a tester, I generate the reports that give the overall status of QS.

Deployment and Maintenance Phase
In this last phase, QS is ready to demonstrate to the client with a 99% error-free application. The maintenance phase 
includes changes, modifications, and updates to the customer-related QSE. QC is a trending area for research in QSE, 
focusing mainly on classical software systems integrated with quantum algorithms [23]. Quantum Computers are more 
cost-effective to design because they adopt existing classical software systems. Therefore, re-engineering is essential 
for the migration process.

Proposed Work
This section discusses the QMLT technique with the QSTLC in detail, including various testing phases, findings, verification, 
validation, debugging, result analysis, and status reports. Quantum Computers are more efficient than CC. Furthermore, 
quantum computers have features different from those of classical computers, such as superposition, entanglement, 
and no cloning. In the design phase, the developers make common mistakes when designing Quantum Applications 
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compared to classical computers. In classical software engineering, testing applications based on the knowledge of 
the internal design of the application meant a white box and testing [16]. Applications based on requirements and 
functionality and not based on the knowledge of the internal design meant black box testing.

QSTLC, including various testing phases, findings, verification, validation, debugging, result analysis, and status reports. 
After the compilation of development, the QA is tested to verify and validate quantum circuit behavior based on specified 
requirements before being demonstrated to end users. Like the design phases, QMLT includes the testing phases, i.e., 
plan, development, execution, result analysis, tracking, and reports [24]. The testing of these activities represents the 
Software Testing Life Cycle (STLC). Figure 2 above shows the flow of the QSTLC. In the first phase, test plans are
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the testing phases, i.e., plan, development, execution, result analysis, tracking, and
reports[24]. The testing of these activities represents the Software Testing Life Cycle
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Fig. 4 Quantum Software Testing Life Cycle (QSTLC).

developed by gathering the test requirements for QS, such as documents, databases,
and input/output. In the second phase of test scenario design, prepare the test sce-
narios with the help of these written test cases and check whether all requirements
are covered, i.e., functional, non-functional, and domain specifications. Third-phase
test case execution is here to execute all the test cases and find the functionality of
the requirements matched with the output of the QS module. Four-stage test status
report team survey results are sent to developers using a debugging process, then the
bugs are fixed and the reports prepared. The final phase measures qubit states like
superposition and measures whether the qubit requirement meets or not in the QS
application. QA-team verification involves static analysis and review without executing
the circuit. QA-team validation involves dynamic analysis to review the function and
non-function and execute the circuit. Programmers analyze results from the execution
of the circuit and make different assertions.

5.1 Test Scenario Design

Prepare test scenarios according to design test cases. To ensure the coverage of all the
requirements, which includes the functional, non-functional, and QS specifications.
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Figure 4: Quantum Software Testing Life Cycle (QSTLC)

Figure 5: Quantum Software Testing Life Cycle (QSTLC) with Quantum Machine Learning

Developed by gathering the test requirements for QS, such as documents, databases, and input/output. In the second 
phase of test scenario design, prepare the test scenarios with the help of these written test cases and check whether all 
requirements are covered, i.e., functional, non-functional, and domain specifications. Third-phase test case execution 
is here to execute all the test cases and find the functionality of the requirements matched with the output of the QS 
module. Four-stage test status report team survey results are sent to developers using a debugging process, then the 
bugs are fixed and the reports prepared. The final phase measures qubit states like superposition and measures whether 
the qubit requirement meets or not in the QS application. QA-team verification involves static analysis and review 
without executing the circuit. QA-team validation involves dynamic analysis to review the function and non-function and 
execute the circuit. Programmers analyze results from the execution of the circuit and make different assertions.

Test Scenario Design
Prepare test scenarios according to design test cases. To ensure the coverage of all the requirements, which includes 
the functional, non-functional, and QS specifications.
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Fig. 5 Quantum Software Testing Life Cycle (QSTLC) with Quantum Machine Learning.

5.2 Test Case Execution

Execute all test cases, then verify the functionality of the QS module. Match the
output compared with the expected results.

5.3 Test Status Report

The results of the test execution were in a test status report, and the QA-team con-
ducted surveys and gathered feedback. Identify the bugs and send them to developers
for debugging.

5.4 Verification and Validation

Finally, QA-team verification and validation include static analysis and review of
the circuit without execution and dynamic analysis and review functionality with
execution[25].

11

Test Case Execution
Execute all test cases, then verify the functionality of the QS module. Match the output compared with the expected 
results.

Test Status Report
The results of the test execution were in a test status report, and the QA-team conducted surveys and gathered 
feedback. Identify the bugs and send them to developers for debugging.
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Verification and Validation
Finally, QA-team verification and validation include static analysis and review of the circuit without execution and 
dynamic analysis and review functionality with execution [25].

Algorithm 1 QMLT Algorithm with Quantum Gates
 function CorrectInitialQuantumValues(Q)
 for i ← 0 to len(Q) − 1 do if Qi ∈ {/ 0,1} then
 Qi ← 0
 43 end if
 end for
 end function
 function QMLTAlgorithm(E)
 Q ← [0,1,0,0]
 Q ← CorrectInitialQuantumValues(Q)
 print ”Corrected Quantum Values:”, Q
 ApplyQuantumOperations
 print ”Quantum operations applied.”
 ComposeQuantumOperations
 print ”Quantum operations composed.”
 ApplyQMLT Technique
 print ”QMLT techniques applied.”
 TransformQuantumState
 print ”Quantum state transformed.”
 UseClassicalParameters(0.5)
 print ”Classical parameters used.”
 DeallocateQubits
 print ”Qubits deallocated.”
 end function
 return Q

The efficiency of testing techniques and scenarios is shown in Figure 6 in terms of Gbps. Techniques such as QST, QMLT, 
and CST are used to evaluate quantum applications’ performance and dependency. The scenarios include error detection 
(ED), hardware characterization (HC), algorithm optimization (AO), quantum simulation (QS), and error testing (ET). 
According to each scenario, this simulation quantum systems, error detection, hardware characterization, and algorithm 
improvement with QST different performance.

Experimental Results
In this section, the performance of the proposed testing technique is compared with existing QST techniques. QS bug 
is an abnormal program behavior requirement that does not match customers’ needs. Programmers developed a QP 
using programming languages. Developers usually need to understand these features. The bad coding practices have 
occurred. To debug and test the QS, thoroughly understand the behavior of bugs in the QP bug types to support QS 
debugging in QC. Implementing the QA’s identified several bug types for QS and helped them understand the different 
strategies
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Fig. 6 Quantum Software Testing Technique Efficiency.

for each bug type. QS bug types include incorrect initial qubits, quantum operations,
and quantum state transformations, the composition of operations using iteration, the
composition of these operations using recursion and mirroring, the classical program
input parameters, and the de-allocation of the qubits.

6 Conclusion

The proposed QMLT technique enhances software testing by integrating advanced
methodologies, including QSTLC principles. QMLT automates test case selection and
execution using ML for anomaly detection and predictive maintenance, analyzing
data to prioritize high-risk cases. NLP generates automated status reports, offering
real-time insights and facilitating team communication. QMLT evaluates bug reports
to identify patterns, refining testing processes for continuous improvement. QC for
speedups and thorough coverage despite current hardware and integration challenges.
Combining ML, NLP, and QC, QMLT provides a robust, automated framework that
enhances software quality through early issue detection and resolution, positioning
itself as essential in modern QS development and testing.
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for each bug type. QS bug types include incorrect initial qubits, quantum operations, and quantum state transformations, 
the composition of operations using iteration, the composition of these operations using recursion and mirroring, the 
classical program input parameters, and the de-allocation of the qubits.

Conclusion
The proposed QMLT technique enhances software testing by integrating advanced methodologies, including QSTLC 
principles. QMLT automates test case selection and execution using ML for anomaly detection and predictive maintenance, 
analyzing data to prioritize high-risk cases. NLP generates automated status reports, offering real-time insights and 
facilitating team communication. QMLT evaluates bug reports to identify patterns, refining testing processes for 
continuous improvement. QC for speedups and thorough coverage despite current hardware and integration challenges. 
Combining ML, NLP, and QC, QMLT provides a robust, automated framework that enhances software quality through 
early issue detection and resolution, positioning itself as essential in modern QS development and testing.
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