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Abstract 
Network biology has become a cornerstone methodology for understanding complex biological systems, yet the majority 
of approaches employ static networks that fail to capture the inherently dynamic nature of biological processes. This 
literature review synthesizes recent advances in moving biological network analysis beyond static models toward dynamic, 
temporal frameworks that better represent spatiotemporal complexity. We critically examine emerging methodologies for 
constructing, analyzing, and visualizing dynamic biological networks across multiple scales, from molecular interactions 
to cellular systems and organismal development. The review evaluates significant progress in temporal network 
inference algorithms, mathematical modeling approaches, and computational tools that have expanded our ability to 
interpret time-varying biological data. We further explore applications in disease progression modeling, drug response 
prediction, and personalized medicine, highlighting how dynamic network approaches have improved our understanding 
of biological mechanisms. Despite notable advances, significant challenges remain in data integration, computational 
efficiency, and biological interpretation of temporal network patterns. By bridging disciplinary boundaries between 
network science, systems biology, and computational modeling, dynamic network approaches are poised to transform 
our understanding of living systems and accelerate biomedical research.
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Introduction
The Limitations of Static Network Representations in Biology
Biological systems are inherently dynamic, with molecular interactions, cellular processes, and physiological responses 
continuously changing across time and space. However, the majority of current network biology approaches employ 
static representations that capture only snapshots of these complex systems [1]. Static networks, while valuable for 
understanding overall system architecture, fail to represent crucial temporal aspects of biological processes, including 
sequential activation patterns, feedback mechanisms, and adaptive responses to environmental stimuli [2].

The static representation paradigm has dominated network biology due to several factors: (1) limited availability of 
time-series biological data, (2) computational complexity of temporal network analysis, and (3) insufficient mathematical 
frameworks for modeling dynamic biological interactions [3]. However, these limitations have increasingly been recognized 
as significant barriers to understanding the full complexity of biological systems.

Emergence of Dynamic Network Biology
Recent technological advances have enabled the collection of time-resolved biological data at unprecedented scales and 
resolutions. High-throughput omics technologies now allow for temporal profiling of molecular states, while advances 
in imaging have enabled visualization of dynamic cellular processes [4]. These developments have catalyzed a shift 
toward dynamic network biology—an emerging paradigm that incorporates temporal dimensions into biological network 
analysis.
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Dynamic network biology aims to model and analyze how biological networks evolve over time, capturing the temporal 
orchestration of molecular interactions that underlie cellular functions, developmental processes, and disease progression 
[2]. This paradigm shift represents a significant advancement in our ability to understand living systems, moving beyond 
static "wiring diagrams" toward more realistic models of biological dynamics.

Objectives and Scope of this Review
This review aims to synthesize and critically evaluate recent advances in dynamic network biology, with a focus on 
methodological innovations, computational tools, and biological applications. We examine approaches for constructing, 
analyzing, and visualizing dynamic biological networks across multiple scales—from molecular to cellular and organismal 
levels. The review also explores how dynamic network approaches have enhanced our understanding of disease 
mechanisms and treatment responses.

While comprehensive, this review does not attempt to cover all aspects of network biology or temporal modeling. 
Instead, we focus on key methodological advances and biological insights that specifically address the limitations of 
static network representations. By highlighting both achievements and challenges in this rapidly evolving field, we aim 
to provide a roadmap for future research directions in dynamic network biology.

Methods
Literature Search Strategy
To comprehensively review the field of dynamic network biology, we conducted a systematic literature search across 
multiple scientific databases, including PubMed, Web of Science, IEEE Xplore, and Google Scholar. The primary search 
terms included combinations of "dynamic network biology," "temporal networks," "time-varying networks," "biological 
networks," "network inference," "spatiotemporal networks," and "dynamic systems biology." These primary terms were 
combined with more specific secondary terms related to methodologies (e.g., "mathematical modeling," "machine 
learning," "inference algorithms") and applications (e.g., "disease progression," "drug response," "cellular signaling").

The search was limited to English-language publications from January 2010 to April 2025, with a focus on peer-reviewed 
research articles, review papers, and conference proceedings. We prioritized articles that explicitly addressed temporal 
or dynamic aspects of biological networks, excluding papers that focused solely on static network analysis. Additional 
relevant publications were identified through citation tracking and expert recommendations.

Selection Criteria and Analysis Framework
From the initial search results, we selected publications based on the following criteria: 
•	 Explicit focus on dynamic or temporal network approaches
•	 Application to biological systems or data
•	 Methodological innovation or significant biological insight
•	 Relevance to overcoming limitations of static network representations

Publications were excluded if they only used static network approaches or if they focused on non-biological applications 
of dynamic networks.

Selected publications were categorized according to a structured framework that distinguished between: 
(A) Methodological Papers Describing New Algorithms or Computational Approaches
(B) Application Papers Demonstrating Biological Insights Gained from Dynamic Network Analysis
(C) Review Papers or Perspectives Synthesizing the Field

Within these categories, we further classified papers based on the biological scale (molecular, cellular, tissue, organism), 
type of biological process (signaling, metabolism, gene regulation, etc.), and methodological approach (statistical 
inference, mathematical modeling, machine learning, etc.).

Evaluation of Methodological Approaches
To evaluate the methodological approaches described in the literature, we assessed them based on several criteria: 
•	 Biological realism and ability to capture relevant temporal dynamics
•	 Computational efficiency and scalability
•	 Statistical robustness and handling of uncertainty
•	 Interpretability of results
•	 Validation against experimental data 

This evaluation framework allowed us to compare different approaches and identify relative strengths and limitations.

For mathematical and computational methods, we examined the underlying theoretical frameworks, assumptions, and 
constraints. We paid particular attention to how different methods handle challenges specific to biological data, such 
as high dimensionality, noise, sparsity, and non-linear dynamics. For each major methodological category, we identified 
representative examples that demonstrate key principles and innovations.
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Results
Advances in Dynamic Network Inference Methods
Time-Series-Based Network Inference Algorithms
Recent years have witnessed significant advances in algorithms designed to infer dynamic networks from time-series 
biological data. Unlike traditional approaches that construct static networks by aggregating data across all time points, 
these methods explicitly model the temporal evolution of network structure [5]. A notable development is the D3GRN 
algorithm, which constructs dynamic gene regulatory networks (GRNs) from time-series gene expression data using a 
data-driven approach that captures the temporal dependencies between genes. This method has demonstrated superior 
performance in reconstructing known regulatory relationships compared to static network inference methods.

Another significant advance is the RENGE algorithm, which infers gene regulatory networks using time-series single-
cell CRISPR datasets [6]. By integrating perturbation data with temporal information, RENGE can distinguish direct 
from indirect regulatory interactions and identify time-delayed effects, addressing a major limitation of static network 
inference methods. The algorithm demonstrated high accuracy in reconstructing known regulatory networks and 
identified previously unknown regulatory relationships in embryonic stem cell differentiation.

Machine learning approaches have also been increasingly applied to dynamic network inference. The MARLENE 
framework employs meta-learning techniques to recover time-varying networks from single-cell data, enabling network 
reconstruction even for rare cell types with limited data [7]. Similarly, TRIGON uses transformer-based architectures to 
infer dynamic GRNs by learning temporal causality among genes, capturing complex regulatory dynamics that cannot 
be represented in static networks [8].

Integration of Multi-Omics Temporal Data
The integration of multiple types of time-resolved omics data has emerged as a powerful approach for inferring more 
comprehensive dynamic networks. Dictys, a dynamic GRN inference and analysis method, leverages multi-omic single-
cell assays of chromatin accessibility and gene expression to dissect developmental trajectories. By integrating these 
complementary data types, Dictys can identify both the regulatory potential (from accessibility data) and the actual 
regulatory activity (from expression data) across different time points, providing a more complete picture of dynamic 
regulatory networks.

Similarly, PropaNet integrates time-series transcriptome data to investigate dynamics of transcription factor networks, 
demonstrating how temporal integration can reveal condition-specific network rewiring. These multi-omics integration 
approaches address a key limitation of static networks: the inability to distinguish between potential interactions (based 
on physical or biochemical compatibility) and actual functional interactions that occur in specific temporal contexts.

Statistical Approaches for Dynamic Network Modeling
Statistical frameworks for modeling dynamic networks have advanced significantly, with new methods specifically 
designed to handle the complexities of biological data. The locaTE method provides a scalable approach for inferring cell-
specific networks from dynamic single-cell data, enabling the identification of regulatory differences between individual 
cells and the tracking of network changes during cellular processes [9]. This approach has been applied to single-cell 
RNA-seq data from developing embryos, revealing how regulatory networks are rewired during cell fate decisions.

Bayesian approaches have proven particularly valuable for dynamic network inference, as they naturally handle 
uncertainty and can incorporate prior knowledge. Statistical inference of time-varying gene-regulation networks using 
Gaussian processes has enabled the identification of network changes in response to environmental and physiological 
cues [10]. These statistical methods provide a robust framework for distinguishing genuine network dynamics from 
noise, a critical challenge in biological data analysis.

Mathematical Frameworks for Modeling Network Dynamics
Ordinary Differential Equation (ODE) Based Models
Ordinary differential equation (ODE) models remain a cornerstone approach for modeling dynamic biological networks, 
particularly for metabolic and signaling pathways where reaction kinetics are well-characterized. Recent advances have 
focused on making these models more scalable and adaptable to the complexity of biological systems. ProbRules 
represents a significant innovation, combining probabilities and logical rules to represent the dynamics of biological 
systems across multiple scales [11]. This approach bridges the gap between detailed ODE models, which are 
computationally expensive, and Boolean models, which lack quantitative detail.

A novel pipeline for the automatic construction of large-scale dynamic models using ODEs has been developed to 
address the challenge of building comprehensive models of genome-scale interaction networks [12]. This approach uses 
a list of biomolecules and their time-resolved measurements to automatically generate and parameterize ODE models, 
significantly reducing the manual effort typically required for dynamic model construction.

Discrete and Boolean Models of Network Dynamics
Discrete dynamic modeling, particularly Boolean networks, offers a more tractable approach for large-scale networks 
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where detailed kinetic parameters are unknown. Recent advances have extended these methods to better capture 
biological complexity. MaBoSS, a tool based on Boolean modeling using a continuous time approach, predicts time-
dependent probabilities of biological entities and has been applied successfully to model signaling pathways. The 
approach bridges the gap between discrete Boolean states and continuous time, providing more realistic representations 
of biological dynamics.

A novel mathematical model for cell signaling pathways based on extended Boolean networks has been developed to 
model protein scaffolding, an important regulatory mechanism that cannot be adequately represented in static networks 
[13]. This approach demonstrates how discrete models can be enhanced to capture specific biological mechanisms that 
involve dynamic assembly and disassembly of protein complexes.

Stochastic and Hybrid Approaches
Stochastic modeling approaches have gained prominence for capturing the inherent randomness in biological systems, 
particularly at the molecular level where low copy numbers lead to significant variability. Hybrid approaches that combine 
deterministic and stochastic elements have proven particularly valuable for multi-scale modeling of biological networks. 
These methods allow for the efficient simulation of large networks while still capturing the stochasticity of critical 
components.

A deterministic theory for studying evolutionary dynamics of pairwise games in structured populations with temporal 
networks has been developed to model how interaction patterns evolve over time, influencing evolutionary outcomes. 
This approach demonstrates how temporal network models can capture evolutionary dynamics that would be impossible 
to represent with static networks.

Computational Tools and Visualization Methods
Software Platforms for Dynamic Network Analysis
Several software platforms have been developed specifically for the analysis of dynamic biological networks. Cytoscape, 
a widely used platform for network visualization and analysis, has been extended with plugins specifically designed for 
dynamic network analysis. The ANIMO (Analysis of Networks with Interactive MOdeling) plugin allows researchers to 
model biological networks and compare their dynamics with experimental data, providing an accessible tool for dynamic 
network analysis [14].

The Dynamical Network Analysis (DNA) package provides functionalities for analyzing molecular dynamics simulations 
using network-based methods, enabling the identification of allosteric pathways and communication networks within 
biomolecules [15]. This tool demonstrates how network-based approaches can be applied to understand the dynamic 
behavior of molecular systems at atomic resolution.

Visualization Techniques for Temporal Networks
Visualizing dynamic networks presents unique challenges beyond those of static network visualization, as it requires 
representing both network structure and its evolution over time. Recent advances have produced new visualization 
techniques specifically designed for temporal biological networks. The cytoNet tool integrates vision science with graph 
theory to analyze spatiotemporal networks of cell communities, enabling the visualization of how cellular interaction 
networks evolve during development or disease progression [16].

Interactive visualization tools that allow researchers to explore temporal networks at different time scales and levels of 
detail have also been developed. These tools enable the identification of patterns in network dynamics that might be 
missed in static representations or summary statistics, facilitating the generation of new hypotheses about the temporal 
organization of biological systems.

Integration with Experimental Platforms
An emerging trend is the integration of dynamic network analysis tools with experimental platforms, enabling real-time 
analysis and feedback. This integration is particularly valuable for single-cell technologies, where dynamic network 
models can guide experimental design and interpretation. TIGON, a dynamic, unbalanced optimal transport algorithm, 
reconstructs dynamic trajectories and population growth simultaneously from single-cell transcriptomics data, providing 
insights into cellular differentiation processes [17].

The integration of imaging platforms with dynamic network analysis has also seen significant advances. Spatial 
transcriptomics methods now allow for the construction of spatiotemporal networks that capture how molecular 
interactions evolve across both time and space, providing unprecedented insights into developmental processes and 
tissue organization.

Applications in Understanding Biological Systems
Dynamic Gene Regulatory Networks
The application of dynamic network approaches to gene regulation has revealed complex temporal patterns that cannot 
be captured by static models. Studies of temporal gene regulatory networks controlling neurogenesis have identified 
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how transcription factor networks change during cellular differentiation, with specific factors acting as temporal switches 
that coordinate developmental transitions [18]. These insights highlight the importance of considering the temporal 
ordering of regulatory events, rather than just the presence or absence of regulatory connections.

Time-varying gene expression network analysis has revealed sequential modular patterns in cellular responses to 
stimuli, showing how different functional modules are activated in a coordinated temporal sequence [19]. These studies 
demonstrate that the timing of regulatory interactions, not just their existence, is critical for proper cellular function.

Dynamic Protein-Protein Interaction Networks
Protein-protein interaction (PPI) networks are particularly dynamic, with interactions forming and dissolving in response 
to cellular conditions. Recent studies have developed methods for constructing dynamic PPI networks based on gene 
expression data, revealing how the interactome changes across different cellular states and conditions [20]. These 
approaches have identified condition-specific interaction modules that would be missed in static PPI networks.

Hypergraph geometry has been used to reflect higher-order dynamics in protein interaction networks, capturing 
multi-protein complexes and their dynamic assembly [21]. This approach moves beyond traditional dyadic (pairwise) 
interactions to represent the more complex, higher-order interactions that characterize many biological processes.

Dynamic Signaling Networks
Cell signaling networks are inherently dynamic, with complex temporal patterns of activation and inhibition. Dynamic 
modeling of signaling pathways has revealed how temporal information is encoded in signaling dynamics, with different 
temporal patterns of the same signaling molecules triggering distinct cellular responses [22]. These findings highlight 
the limitations of static signaling network models, which cannot capture the rich temporal information processing in 
cellular signaling.

Discrete dynamic modeling of cellular signaling networks has been used to predict cellular responses to perturbations, 
revealing how network rewiring following interventions can lead to unexpected outcomes [23]. These approaches 
provide valuable insights for drug development, as they can predict how signaling networks adapt over time in response 
to therapeutic interventions.

Tissue-Specific and Cell-Type-Specific Network Dynamics
The application of dynamic network approaches to tissue-specific biology has revealed how networks are rewired in 
different cellular contexts. Dynamical gene regulatory networks have been shown to be tuned by transcriptional bursting 
in a tissue-specific manner, with different tissues exhibiting distinct patterns of network dynamics [24]. These findings 
highlight the importance of considering both tissue specificity and temporal dynamics in network biology.

Cell-specific networks constructed from single-cell RNA sequencing data have enabled the identification of regulatory 
differences between individual cells, revealing heterogeneity that would be masked in bulk analyses [25]. Dynamic 
analysis of these networks has provided insights into how cellular heterogeneity emerges and evolves during development 
and disease progression.

Applications in Disease Understanding and Treatment
Modeling Disease Progression
Dynamic network models have provided valuable insights into disease progression mechanisms. A pathway-based 
approach to modeling disease progression using dynamics of pathway connectivity has revealed how the rewiring of 
molecular networks drives disease evolution over time [26]. This approach has been applied to cancer progression, 
identifying critical network transitions that mark the progression from early to advanced disease stages.

The development of dynamic network biomarkers has enabled the identification of early warning signals that precede 
critical transitions in disease states [27]. These biomarkers, based on dynamic network properties rather than static 
molecular measurements, have shown promise for early disease detection and intervention.

Drug Response Prediction and Personalized Medicine
The application of dynamic network approaches to drug response prediction represents a significant advance over 
static models. Network-based approaches to drug response prediction have been developed that incorporate temporal 
data to predict how cellular networks respond to therapeutic interventions over time [28]. These approaches can 
identify potential resistance mechanisms and suggest combination therapies that target different temporal phases of 
the network response.

Graph convolutional networks have been applied to drug response prediction, using dynamic network representations 
to model how drug effects propagate through molecular networks over time. These approaches have demonstrated 
improved predictive performance compared to static network models, particularly for drugs with complex mechanisms 
of action.
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Precision Medicine Applications
The integration of dynamic network approaches with precision medicine has enabled more personalized treatment 
strategies. Patient-specific dynamic network models, constructed from time-series omics data, have been used to 
predict individual drug responses and guide treatment selection. These approaches account for the unique dynamic 
properties of each patient's molecular networks, providing a more personalized understanding of disease mechanisms 
and treatment responses.

Single-cell dynamic network analysis has revealed how cellular heterogeneity contributes to treatment response variability, 
identifying subpopulations with distinct network dynamics that respond differently to therapeutic interventions. These 
insights have important implications for precision medicine, as they can guide the development of combination therapies 
that target multiple cellular subpopulations.

Discussion
Synthesis of Current Advances
The field of dynamic network biology has made remarkable progress in moving beyond static representations toward 
more realistic models of biological systems. Several key themes emerge from our review of recent advances:

First, methodological innovations have significantly expanded our ability to infer and analyze dynamic networks from 
biological data. New algorithms for temporal network inference, mathematical frameworks for modeling network 
dynamics, and computational tools for visualization and analysis have collectively enhanced our capacity to capture 
the temporal complexity of biological systems. These methodological advances have been enabled by interdisciplinary 
approaches that combine principles from network science, machine learning, statistical physics, and systems biology.

Second, the application of dynamic network approaches has revealed biological insights that would be impossible to 
obtain from static network analysis. Studies across multiple biological scales—from molecular interactions to cellular 
systems and organismal development—have demonstrated how temporal network dynamics underlie critical biological 
processes. These applications have highlighted the limitations of static network representations and the value of 
incorporating temporal dimensions into biological network analysis.

Third, the integration of dynamic network approaches with biomedical applications has enhanced our understanding 
of disease mechanisms and treatment responses. Dynamic models of disease progression, drug response prediction, 
and precision medicine applications have demonstrated the clinical relevance of temporal network analysis. These 
applications suggest that dynamic network approaches may contribute to more effective and personalized medical 
interventions.

Challenges and Limitations
Despite significant progress, several challenges and limitations remain in the field of dynamic network biology

Data Limitations: The inference of dynamic networks requires time-resolved biological data with sufficient temporal 
resolution and coverage. While technological advances have increased the availability of such data, many biological 
processes still lack adequate temporal profiling. Additionally, integrating time-series data across different experimental 
platforms and scales remains challenging.

Computational Complexity: Dynamic network analysis is computationally intensive, particularly for large-scale 
networks and fine-grained temporal resolution. Current methods often require significant computational resources, 
limiting their application to very large systems. Balancing computational efficiency with biological realism remains a 
central challenge.

Validation Challenges: Validating dynamic network models is inherently more difficult than validating static models, as 
it requires experimental verification of temporal relationships. The lack of gold standard datasets for dynamic networks 
further complicates method benchmarking and comparison.

Biological Interpretation: Interpreting the biological significance of dynamic network patterns remains challenging. 
While new visualization tools have improved our ability to explore temporal network dynamics, extracting meaningful 
biological insights from these complex patterns requires domain expertise and new conceptual frameworks.

Integration Across Scales: Biological systems operate across multiple temporal and spatial scales, from molecular 
fluctuations occurring in microseconds to developmental processes spanning days or years. Integrating dynamic network 
analyses across these diverse scales presents significant theoretical and practical challenges.

Future Directions
Based on current advances and remaining challenges, several promising directions for future research in dynamic 
network biology emerge
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Advanced Inference Methods: Further development of inference methods that can handle sparse, noisy, and 
heterogeneous temporal data will be essential. Approaches that integrate prior knowledge with data-driven inference, 
perhaps using Bayesian frameworks or physics-informed machine learning, may prove particularly valuable.

Multi-Scale Temporal Models: New theoretical frameworks that can seamlessly integrate dynamic networks 
across multiple temporal and spatial scales will be needed to fully capture the complexity of biological systems. These 
frameworks should bridge the gap between fine-grained molecular dynamics and broader systems-level behaviors.

Causal Inference in Temporal Networks: Moving beyond correlation to establish causal relationships in dynamic 
networks represents a critical next step. Methods that can distinguish causal influences from coincidental temporal 
patterns will enhance our understanding of biological mechanisms.

Standardization and Benchmarking: The development of standard benchmarking datasets and evaluation metrics 
specifically for dynamic network methods would facilitate more rigorous comparison and validation of new approaches.

Integration with Other Data Types: Combining dynamic network analysis with other data types, such as spatial 
information, genetic variation, and environmental factors, will provide a more comprehensive understanding of biological 
systems in their full context.

Clinical Translation: Expanding the application of dynamic network approaches in clinical settings, perhaps through 
user-friendly software tools and standardized analysis pipelines, will be essential for realizing the biomedical potential 
of these methods.

Implications for Biological Understanding
The shift from static to dynamic network representations has profound implications for our understanding of biological 
systems. By incorporating temporal dimensions, dynamic network approaches reveal how biological functions emerge 
not just from the structure of molecular interactions, but from their orchestrated timing and sequence. This perspective 
challenges reductionist views that focus solely on individual components or static relationships, emphasizing instead the 
importance of temporal organization and dynamic coordination.

Dynamic network biology also highlights the adaptive and responsive nature of biological systems. Rather than fixed 
"wiring diagrams," biological networks are continuously rewired in response to internal and external cues, enabling 
organisms to adapt to changing conditions. This dynamic perspective aligns with emerging views of biological robustness 
and plasticity, suggesting that temporal network reorganization may be a fundamental mechanism for maintaining 
homeostasis and responding to perturbations.

Finally, the integration of dynamic network approaches with personalized medicine suggests a path toward more effective 
and individualized treatments. By understanding how disease processes unfold through temporal network changes, and 
how individual variations influence these dynamics, we may develop interventions that precisely target the unique 
dynamic properties of each patient's biological networks.

Conclusion
This review has synthesized recent advances in moving biological network analysis beyond static representations toward 
dynamic, temporal frameworks that better capture the inherent complexity of living systems. Methodological innovations 
in network inference, mathematical modeling, and computational tools have expanded our ability to construct and 
analyze dynamic biological networks. Applications of these approaches have revealed valuable insights into biological 
processes, disease mechanisms, and treatment responses that would be impossible to obtain from static network 
analysis.

While challenges remain in data availability, computational complexity, validation, and biological interpretation, the field 
is poised for continued rapid advancement. Future developments in multi-scale modeling, causal inference, and clinical 
translation will further enhance the impact of dynamic network biology on our understanding of living systems and our 
ability to develop effective interventions for human health.

By embracing the temporal dimension of biological networks, researchers can move beyond simplified static 
representations toward more realistic models that capture the orchestrated dance of molecular interactions underlying 
life's complexity. This dynamic perspective represents not just a methodological advancement, but a conceptual shift in 
how we understand and intervene in biological systems. 
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