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Abstract 
Global climate change is one of the major concerns of modern society. To estimate this change, the global mean 
temperature is often used.  Measuring and calculating the Earth’s average temperature is a complex, multi-step process 
that combines data from various sources and employs statistical techniques. Today, datasets containing spatial-temporal 
data on Earth’s temperature are readily available. Although scientists claim to achieve an accuracy of a few tenths of a 
degree, the fundamental question is not accuracy but whether the global mean temperature is a meaningful metric at 
all.

This paper demonstrates that the current methodology for determining the global mean temperature is inadequate for 
estimating the greenhouse effect and climate change, potentially leading to misleading scientific conclusions in the long 
term. A new methodology is introduced, focusing on the energy budget of the Earth’s heating and cooling processes. 
The total influence of the atmosphere on the greenhouse effect and global warming can be estimated by comparing 
Earth’s temperature with that of the Moon treated as a bare body. The concept of ‘potential temperature for cooling’ is 
introduced as a more appropriate parameter for assessing the greenhouse effect, global warming trends, and climate 
change. Applying this new methodology to temperature averaging is expected to yield surprising results and offer a 
more accurate insight into climate change.
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Introduction
The climate system primarily consists of the land, ocean, ice surfaces, atmosphere, and solar radiation that provide 
energy. These components interact to produce the conditions on and around the Earth's surface that we refer to as 
climate [1]. Climate is defined by averaging physical quantities that characterize these conditions over space and time, 
typically over a 30-year period [2]. The physical quantities considered include surface temperature, precipitation, cloud 
cover, wind patterns, and more.

As Klaus Hasselmann, Nobel Laureate in Physics, noted, a major task in climate science is the detection problem—
identifying the most sensitive climate indices that best distinguish climate change signals from natural climate variability. 
Examples of such indices include global or regional mean surface temperature, vertical temperature differences, sea 
ice extent, sea level change, and integrated deep ocean temperatures [3]. Nevertheless, measuring and reconstructing 
global mean temperatures remains a primary focus of leading organizations such as NASA's Goddard Institute for Space 
Science, the National Oceanic and Atmospheric Administration (NOAA), and the UK Met Office's Hadley Centre [4].

Measuring and calculating global mean temperature involves collecting temperature data from various locations 
worldwide and averaging these values. The globe is divided into numerous spatial cells, and for each grid cell, the 
temperature anomaly—the difference between the measured and usual temperature for a given day—is calculated. 
The average of all anomalies is then determined and compared across years. This process is highly complex, requiring 
sophisticated methods to address data quality, spatial and temporal gaps, and biases. Moreover, different organizations 
may use slightly different methodologies and datasets, leading to variations in reported global mean temperature values.
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Recent advances in atmospheric and oceanic science, coupled with new global measurement systems such as remote 
sensing and numerical computer models, have enabled quantitative studies and predictions of climate change and 
global warming [1-6]. For instance, the IPCC Sixth Report (Climate Change 2021) was based on over 14,000 scientific 
publications, while the IPCC Fifth Report stated with high confidence that human-induced warming had reached 
approximately 1°C (likely between 0.8°C and 1.2°C) above pre-industrial levels by 2017, increasing at a rate of 0.2°C per 
decade [1]. These results, derived from models and observations, are impressive yet remain subject to scientific debate.

This paper examines a fundamental question: Does the global mean temperature provide a meaningful measure of 
climate change? The findings suggest that local surface temperatures are misused in the current methodology, which 
is inadequate for assessing climate change. At a minimum, additional temperature metrics should be considered for 
comparison.

The Current Method
Summing and averaging temperatures from different regions of the Earth's surface yields a quantity with no direct 
physical meaning. In other words, global mean temperature is a purely statistical indicator that is insensitive to climate 
change and has been misinterpreted. The following thought experiments illustrate why the current averaging method 
is flawed.

Thought Experiments
A Simple Proof of the Current Methodology’s Inadequacy 
Imagine the Earth is heated uniformly to a temperature of tEarth=15 oc. Now, suppose that due to climate change, 
one hemisphere's mean temperature drops to t1= 0 oc, while the other rises to t2= 30 oc. The calculated global mean 
temperature remains tEarth= (t1+t2)/2= 15 oc. This demonstrates that infinite temperature distributions—each reflecting 
different climate conditions—can produce the same mean temperature, proving that mean temperature is insensitive to 
climate change.

A more striking example involves a spherical celestial body heated uniformly to 1K. The total power radiated, according 
to the Stefan-Boltzmann law, is:

Where A is surface area, σ is the Stefan-Boltzmann constant, and T is temperature. If half of the body’s surface is cooled 
to 0K while the other half is heated to 2K, the global mean temperature remains 1K, but the power needed to maintain 
this distribution increases eightfold. This illustrates how global mean temperature fails to reflect energy balance.

Spatial and Temporal Temperature Distribution Matters
The Earth's temperature is governed by energy balance—solar shortwave radiation heats the planet, while long-wave 
infrared radiation cools it. The Earth's effective radiometric temperature, calculated as:

where S is the solar constant, σ is the Stefan-Boltzmann constant, and α is albedo (~0.3), differs significantly from the 
actual mean surface temperature (~13.9°C), highlighting the atmosphere's role [6].

Two problems arise immediately, making these comparisons meaningless. First, the albedo differs between a bare planet 
and a planet with an atmosphere. Second, the temperature calculated using equation (3) assumes a uniformly heated 
planet, which never actually occurs in reality.

To emphasize the importance of spatial temperature distribution, let us consider an extreme case. Imagine, for simplicity, 
that one side of the planet is uniformly heated while the other side remains cold at T2≈0K.The temperature of the 
heated side can be calculated using equation (2), with the denominator adjusted from four to two, yielding T1≈303KT. 
Consequently, the global mean temperature, given the same energy input, is now tEarth= (t1+t2)/2= 150K!

Now, imagine a planet that is heated uniformly for half of the time by two Suns (i.e., 2S) and remains unheated for the 
other half. On average, over time, the planet receives the equivalent of one Sun's energy input. If we further assume 
that the planet has a low heat capacity and cools immediately when not exposed to a heat source, we obtain the same 
result as in the previous example.

Thus, one can conclude that any spatial or temporal temperature variation leads to a decrease in the global mean 
temperature. However, this does not necessarily mean the planet is cooling—it simply affects the way energy is 
distributed over time and space.
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The Proposed Method
The core idea is to establish a relationship between energy balance and global temperature. Due to the complexity of 
atmospheric influences, let us first analyse a bare planet, such as the Moon. Since it is at the same distance from the 
Sun as Earth, the solar constant remains unchanged. The Moon's albedo is approximately 0.12, allowing us to estimate 
its average temperature using the zeroth-order model [6]: Tmoon = 270K.

However, since the Moon’s temperature distribution is highly inhomogeneous, and the cooling at each point on the 
surface is proportional to the fourth power of its temperature, it is essential to account for temperature variations over 
time and space to accurately determine the outgoing energy flux.

In theory, the total outgoing energy flux can be calculated by integrating the emitted radiation over a given period and 
across all points on the surface. At equilibrium, the total incoming energy flux over a certain period must equal the total 
outgoing energy flux, ensuring an energy balance.

The Simplest Model of the Moon’s Temperature Distribution
To demonstrate the application of this methodology, let us assume steady-state radiative equilibrium at each point on 
the Moon’s sunlit surface, following the cosine law for solar irradiation. Furthermore, we assume that the absorbed 
energy at any given point is entirely radiated into space as thermal energy:

where A-the Moon’s albedo (~0.11), angle of incidence, ε the emissivity  and represents the surface temperature at a 
given point. Although this model serves as a first-order approximation of the Moon’s temperature distribution, it ignores 
rotation, thermal inertia, and heat conduction. Therefore, it should only be used for quick estimations. The resulting 
“frozen-in-time” temperature distribution is illustrated in Fig. 1.
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Figure 1: the Simplest Model of the Moon’s Surface Temperature Distribution (Sun-Facing Hemisphere)

Knowing the surface temperatures in any point, one can now discretize the Moon’s surface into  cells with the same 
temperature and calculatethe sum of outgoing flux:

This flux must be equal to the total absorbed solar energy:

To characterize the energy balance with a single parameter (which we call Global Energetic Temperature TGET , we use 
the following relation:

This derived temperature has a physical meaning: it represents the temperature the Moon would have if its entire 
surface were uniformly heated. In our simplified model, this temperature is approximately 274K.

In contrast, the traditional approach of computing the global mean temperature using:

(While assuming that the Moon’s dark side is at 0K) yields Tave ≈ 154K. However, this value has no physical significance; 
it only serves as an indicator of temperature inhomogeneity rather than a meaningful global metric.
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The Earth Case
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 and the total incoming flux is given by:[7]

Thus, the correct method for calculating the Earth’s temperature over a specific time period—allowing for estimates of 
climate change (warming or cooling)—is:

This temperature Tp.c, can be referred as the“effective temperature for potential cooling”. Previous parameter-the global 
mean temperature could serve as an indicator for spatial and temporal temperature redistribution. 

Conclusion
This leads to the conclusion that the current methodology for estimating global warming and climate change—based 
on calculating the global mean temperature—is insensitive and inadequate. The primary issue is that the global mean 
temperature lacks direct physical meaning and has no explicit connection to the energy balance.

Mathematically, this inconsistency arises because the global mean temperature is a linear combination of individual 
temperatures, whereas the energy budget is highly nonlinear, depending on the fourth power of temperature (as 
dictated by the Stefan-Boltzmann law).

To address this limitation, we propose a more physically accurate method, which, when tested, could provide new 
insights into climate change using existing datasets. The concept of the "effective temperature for potential cooling" 
offers a more sensitive indicator of global warming and the impact of increasing greenhouse gas concentrations in the 
atmosphere.

An important advantage of this approach is that it can be easily implemented, as it utilizes existing climate datasets. 
The reference point could be set in the pre-industrial era (1850), allowing for a precise reconstruction of the natural 
greenhouse effect and a continuous assessment of climate change and global warming based on changes in the 
effective temperature for potential cooling [8-10].
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