
1Health Guard J Health Prev Med, 2025

Health Guard: Health and 
Preventive Medicine Research

Using Gis to Understand the Spatial and Spatiotemporal Pat-
tern of Covid-19 Cases and Deaths in Oklahoma

Amune Ofuje Blessing* 

USA

10 April, 2025
06 June, 2025
10 June, 2025

Date of Submission:
Date of Acceptance: 
Date of Publication:

Volume 1, Issue 1 

Research Article

Citation: Blessing, A. O. (2025). Using Gis to Understand the Spatial and Spatiotemporal Pattern of Covid-19 Cases 
and Deaths in Oklahoma. Health Guard J Health Prev Med, 1(1), 01-20.

*Corresponding Author:
Amune Ofuje Blessing, USA.

Abstract
COVID-19, which hit the world in December 2019 has been a great cause of concern, requiring intense research to curb 
the virus and create focused polices and management. Therefore, the focus of this research is to provide invaluable 
insights and add to existing knowledge on the COVID-19 virus by using GIS based models to analyze the spatial and 
spatiotemporal patterns of COVID-19 in Oklahoma. Due to the nature of the virus, it is important to continually assess 
the geographic distribution of cases and deaths as well as factors that contribute to the patterns. The study therefore 
uses GIS based methods such as the Getis-Ord Gi statistic, space time cube and time series clustering to identify 
hotspots of COVID-19 cases and deaths in Oklahoma. 

The result showed that hotspots of COVID-19 cases were found around Oklahoma City where hotspots of Blacks and 
Hispanics are located. Whereas for COVID-19 deaths, significant hotspots pattern was found in rural areas majorly 
where significant hotspots of American Indians are located. In addition, a significant uptrend of COVID-19 cases was 
found in few zip codes, and a significant decrease in COVID-19 deaths was found in most zip codes located in the state. 
Lastly areas experiencing similar increase and decrease trends in both COVID-19 cases and deaths were identified. 
Future work is needed to identify the binding factors that may be causing the similarities in trend in places that share 
similar upward and downward trend the virus.

Introduction
The Coronavirus disease (COVID-19) is a highly contagious and pathogenic viral infection caused by the respiratory 
syndrome coronavirus 2 (SARS-CoV-2). The virus first emerged in Wuhan, China in December 2019 and quickly spread 
worldwide, resulting in millions of deaths and poor health conditions [1]. The initial spread of the virus was facilitated 
by a lack of effective policies or abrupt actions to curtail the virus, leading to cluster outbreaks in sports, religious, and 
entertainment events [2]. Spatial assessments of COVID-19 cases have shown that areas with high population density, 
poor urban planning, and overcrowding issues tend to have a higher risk of virus transmission. Major cities have been 
found to be at a higher risk of contracting the virus than rural areas. In many countries, statistically significant hotspots 
for COVID-19 cases and deaths have been found in urban areas, especially in heavily populated cities with many social 
events and places of gathering. 

For example, Sao Paulo, Brazil, Hubei Province of China, northern Italy, and several US states including California, 
Washington, Florida, New York, New Jersey, Massachusetts, Michigan, and Illinois have been identified as having 
significant COVID-19 hotspots [3]. This information underscores the importance of effective policies to prevent the 
spread of the virus, especially in highly populated urban areas. \In Europe, a spatial assessment of COVID-19 cases ratio 
between week 9 to 34 of 2020 suggested a cluster distribution of high incidence across England with higher risk areas 
concentrated in and around metropolitan areas such as Leicester, Birmingham, Liverpool, and Manchester. 
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Significant hotspots for COVID-19 related mortality was highly clustered and were identified in North London, West 
Midlands northwest, Sheffield, and Newcastle Manchester, indicating that major cities tended to have a higher risk of 
contracting the virus than rural areas. Due to the virus’s infectious nature, areas that are heavily populated with poor 
urban planning and overcrowding issues tend to have a greater risk of virus transmission. In addition, small clusters of 
significant COVID-19 case rates were also found in suburban areas throughout England such as Ashford, Kings Lynn, 
and West Norfolk, and Burrow-in-Furness. 

These clusters may be centers of events such as stadiums, theaters, religious houses where people are mostly crowded. 
In Brazil, as of May 2020, over 233,142 COVID-19 cases and 15,633 COVID-19 related deaths had been recorded. The 
city of São Paulo had the highest clustering of COVID-19 with a significant hotspot for both confirmed cases and deaths 
[4]. São Paulo is Brazil’s largest city and the world’s seventh-largest city, with over 12 million people. In early March 
2020, China had the most confirmed cases of COVID-19, followed by Italy. In the middle of March 2020, European 
countries had more confirmed cases than other continents. However, since November 2020, the United States has been 
the leading country of the COVID-19 outbreak [5].

Given the virus’s contagious nature, it is clear how population density, high numbers of social events, and places of 
gathering tended to play a key role in the transmission of the virus, given the higher prevalence of cases found in major 
cities. Spatial epidemiology is an essential field for identifying the spread and distribution of infectious diseases, such as 
COVID-19. Spatial clustering analysis is a fundamental tool for distinguishing between random and significant clusters 
of disease cases, and it is of great value in identifying potential underlying causes of such clusters. 

It is possible to account for different risk factors, including socioeconomic and environmental conditions, by analyzing 
the spatial and temporal variability of the clusters. By utilizing the data and maps generated by spatial clustering 
analysis, we can develop targeted public health interventions and effectively implement public health programs that 
cater to the specific etiological characteristics of COVID-19. Such measures can significantly help prevent and control 
the spread of the disease, and by extension, reduce morbidity and mortality.

The recent emergence of the COVID-19 virus has resulted in a significant and ongoing public health crisis that has 
affected people around the globe. Although there have been many studies exploring the spatial and temporal patterns of 
the virus, given the recent emergence of the virus, there are still many gaps in our understanding of its spatiotemporal 
trends. The objective of this research is to conduct a spatial and spatiotemporal analysis of COVID-19 cases and deaths 
in the state of Oklahoma. Specifically, the study aims to identify statistical hotspots of COVID-19 cases and deaths in 
the state, as well as to identify areas where there have been significant increases or decreases in the number of cases 
and deaths over time. 

By utilizing advanced statistical and spatial analysis techniques, this study will help to identify patterns and trends in the 
spread of COVID-19 in Oklahoma. The results of this analysis can inform public health officials and policymakers in the 
development of targeted interventions and policies to prevent and control the spread of the virus. Overall, this research 
has the potential to provide critical insights into the spatiotemporal dynamics of COVID-19 in Oklahoma, which can help 
to mitigate the impact of the pandemic and save lives.

Therefore, this study will provide valuable insights and add to the existing body of knowledge on the current global 
pandemic. By analyzing the recent spatiotemporal trends of the virus, we can gain a better understanding of how it 
spreads and identify potential hotspots where public health interventions can be implemented to control its spread. 
This knowledge can help inform public health policies and aid in the development of effective strategies for managing 
pandemic. Overall, this study will be a crucial contribution to the ongoing efforts to combat the COVID-19 pandemic, 
and it has the potential to provide significant benefits to global public health.

Literature Review
Overview of COVID-19 Cases and Deaths in the United States
The COVID-19 pandemic has had a devastating impact on the United States since it was first detected in January 2020 
(CDC 2020). According to the Centers for Disease Control and Prevention (CDC), as of February 2023 there had been 
over 102 million confirmed cases of COVID-19 and over 1.1 million total deaths in the country . The pandemic has 
affected every state in the country, with significant disparities based on factors such as age, race, and socioeconomic 
status [6]. Early in the pandemic, New York City was hit particularly hard, with over 190,000 cases and 15,000 deaths 
attributed to COVID-19 by May 2020 [7]. 

However, as the pandemic has progressed, other states and regions were also heavily impacted. As of February 2023, 
California, Texas, and Florida had the highest number of confirmed cases in the country, with over 11 million, 8 million, 
and 7 million cases, respectively. Older adults and those with underlying health conditions have been particularly 
vulnerable to severe illness and death from COVID-19. Black and Hispanic individuals have also been disproportionately 
affected by COVID-19, with higher rates of hospitalization and death compared to White individuals [6,8]. 

The response to the COVID-19 pandemic in the United States has been complex and has varied widely depending on the 
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state and local government policies. Many states implemented social distancing measures, such as school closures and 
stay-at-home orders, to slow the spread of the virus. However, the effectiveness of these measures has been debated, 
and there have been significant political and public health controversies surrounding the pandemic response in the 
United States [9].

In summary, the COVID-19 pandemic has had a significant impact on the United States, with over 102 million confirmed 
cases and over 1.1 million deaths. The impact of COVID-19 has been felt across the country, with significant disparities 
based on factors such as age, race, and socioeconomic status. The response to the pandemic has been complex and 
controversial, and it remains a significant public health challenge in the United States.

Spatial Pattern of COVID-19 Cases and Deaths in the United States
The COVID-19 pandemic has significantly affected the United States, with numerous cases and deaths recorded since 
its emergence. Understanding the spatial pattern of the virus is critical in controlling its spread, as it helps in identifying 
hotspots and determining areas that require targeted interventions. In the US, several studies have been conducted to 
better understand the spatial pattern of COVID-19. Analyzed the spatial pattern of COVID-19 cases in the US using the 
kernel density estimation method [10]. 

The study found that the highest concentration of cases was in urban areas, particularly in the Northeast and Midwest 
regions. Similarly, Andersen used cluster analysis to identify three clusters of high COVID-19 prevalence: New England, 
Southeast, and Southwest [11]. The authors noted that the clustering of COVID-19 cases was influenced by the level of 
urbanization, whereas COVID-19 deaths were influenced by high concentrations of Black population and people living 
with disability. Other related studies using diverse methods have consistently found similar high clusters of COVID-19 
cases and deaths, particularly in urban areas [12-14].

The spatial distribution of COVID-19 cases and deaths has varied widely across the country, with some regions and 
communities being hit particularly hard by the pandemic. Studies have shown several statistically significant COVID-19 
clusters for both incidence and mortality. Found hotspots of COVID-19 cases and deaths in the United States in major 
cities such as New York City, New Orleans, and Chicago, with several small rural clusters as well. At the national level, at 
the initial stage of the pandemic, results of COVID-19 prevalence rates were greater in urban areas compared to rural 
counties in the Northeast and Mid-Atlantic regions of the United States. However, later the intensity of the virus shifted 
to a rapid surge in rural areas [15,16]. 

High prevalence states located in rural areas in the Midwest of the country had more than 3,400 COVID-19 cases per 
100,000 population compared to 1,284 cases per 100,000 population in urban counties nationwide between August 30 
and November 12, 2020 [12].

Studies analyzing the spatial pattern of COVID-19 in the United States have consistently identified clustering of cases 
in urban areas especially during the initial stage, particularly in the Northeast and Midwest regions. Population density 
and mobility patterns are significant contributors to the clustering of cases. However, recent findings have found a great 
insurgence in rural areas. Targeted interventions in these hotspots are recommended to control the spread of the virus. 
Furthermore, due to the novelty of the virus, further investigation is required to obtain up-to-date information on the 
current locations where the virus is prevalent. The findings from these studies are useful in developing effective public 
health policies to prevent the spread of COVID-19 in the United States.

Spatiotemporal Pattern of COVID-19 Cases and Deaths in the United States
Just like the spatial patterns, understanding the spatiotemporal pattern of the virus is likewise critical in controlling 
the spread of COVID-19, as it helps in identifying hotspots and determining areas that require targeted interventions 
at different periods. Spatiotemporal analysis, which integrates spatial and spatiotemporal structures, is used to study 
the space-time variation by identifying disease patterns persisting over time and over spatial units. Several studies on 
COVID-19, in a bid to understand the nature of the virus, have employed spatial temporal analysis by analyzing the 
COVID-19 cases at specific period to determine varying clusters to help make useful predictions [16]. 

The COVID-19 pandemic in the United States showed a distinct geographic and temporal pattern. Initially, major 
metropolitan areas such as New York City experienced a surge in cases, but as the pandemic progressed, the Southeast 
and Southwest regions of the country became new hotspots during the summer months. In the fall, the upper Midwest 
became the next region to see a significant increase in cases. From the start of the pandemic, the number of cases 
steadily increased until October 2020, at which point there was an exponential surge that continued through the end 
of the year. 

This surge in cases was attributed to a variety of factors, including colder weather driving people indoors, relaxed social 
distancing measures, and pandemic fatigue. In terms of deaths, there was an initial exponential increase in the spring 
months of March and April, followed by a decrease and relative stability through October. However, the number of 
deaths from COVID-19 experienced another exponential increase in November and December, which was linked to the 
surge in cases in the preceding months. Investigated the spatial and temporal patterns of the COVID-19 pandemic in 
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the United States and found substantial regional clustering patterns that varied on both an annual and weekly scale. At 
the initial stage, the Great Plains, Southwestern, and Southern areas showed divergent COVID-19 experiences [17-19]. 

However, after examining the data by epi week (also known as epidemiological week, which is a standardized way of 
collecting, organizing and reporting health data on a weekly basis), the space-time analyses discovered three separate 
clusters of cases from November 2020 to January 2021 in the West/Southwest, Ohio-Mississippi Valley, and Northeast. 
The reason for this was an abrupt rise in cases at the close of 2020. When analyzing COVID-19 deaths, four unique space-
time clusters were found. Early clusters were discovered in the New York Metropolitan area (August 3, 2020-January 31, 
2021), the South (October 12, 2020-January 31, 2021), the Midwest and Great Plains (November 23, 2020-January 31, 
2021), and the West, (December 21, 2020-January 31, 2021).

These findings suggest that the pandemic’s spatial and temporal patterns have varied significantly across the United 
States, and that different regions have experienced the pandemic differently. The study’s results may help inform public 
health policies and interventions aimed at mitigating the spread of COVID-19 in the United States. Hence, further 
exploration of these patterns in specific regions can provide valuable insights into the local spatiotemporal patterns of 
COVID-19 transmission and deaths, which can then be used to inform local policies and interventions. 

For example, regions with high case and death rates may require more aggressive measures to mitigate the spread 
of the virus, such as stricter lockdowns and increased testing and contact tracing efforts. On the other hand, regions 
with lower case and death rates may be able to implement less stringent measures, such as targeted interventions and 
phased reopening plans. Understanding the local patterns of COVID-19 transmission can also help identify disparities 
and inequities in access to healthcare and other resources, which can then be addressed through targeted policies and 
interventions. Therefore, continued research into the spatial and temporal patterns of COVID-19 at the local level is 
essential for effective pandemic management and control.

GIS Methods Relevant to Spatio-Temporal Analysis
GIS has become a crucial tool in understanding and analyzing health related data. This is because it has the capability to 
integrate spatial and non-spatial data, enabling researchers to explore relationship between health outcomes as well as 
various social economic and socio demographic factors. The space time cube technique for example is a powerful tool in 
GIS that is used for spatio-temporal analysis. It integrates spatial and temporal dimensions into single visualization and 
analytical framework and allows researchers to explore how phenomenon changes over space and time. In their study, 
utilizes the Space-Time Cube analysis to explore the spatio-temporal patterns of tornado occurrences in Virginia. Temporal 
clusters of tornado events were identified, highlighting periods when tornado activity was particularly concentrated or 
when there were notable shifts in spatial patterns [20]. 

Likewise, the space-time cube was employed by , to analyze the spatiotemporal patterns of road traffic crashes [21]. 
This involves aggregating crash data from 2015 to 2019 into space-time bins. The Mann-Kendall statistic was used 
to evaluate trends within each bin, identifying areas with increasing or decreasing crash frequencies over time. The 
analysis revealed a higher clustering of crashes during weekdays in 2019 compared to 2015. This suggests systematic 
issues, related to increased traffic during workdays or specific behavioral patterns.

Another GIS method used for spatio-temporal analysis is the trajectory analysis method. This method is used in analyzing 
the movement patterns of objects or entities over space and time. This involves tracking flights, calculating speeds, 
accelerations, and identifying hotspots or clusters of movement . Groff, Weisburd, and Morris 2009 in their study 
employed the trajectory analysis method to map the movement patterns of juveniles involved in crimes. This approach 
helps in understanding the routes and behaviors of offenders, identifying frequent pathways and stop points [22].

Lastly, Agent-Based Modeling (ABM) is another powerful tool in GIS used for spatiotemporal analysis. It allows researchers 
to model the behavior and interactions of individual agents within a spatial and temporal framework. The ABM is used 
to visualize changes over time using animations, time sliders, or temporal plots to observe dynamics like the spread 
of disease, traffic congestion, or wildlife migration. Wise et al 2023, used the ABM technique to simulate the spread 
of infectious disease and explore how different spatial and temporal resolutions influence the study by incorporating 
different spatial scales and time unit. The result suggests that both time and spatial resolution have significant effect 
on a study given that finer resolution tends to capture localized outbreaks compare to coarse resolution, so also finer 
resolution in time unit provides more details into the progression of a disease outbreak [23].

In summary, the space-time cube, trajectory analysis, and agent-based modeling (ABM) are some of the common 
GIS methods used for spatiotemporal analysis. These methods are integral to spatiotemporal analysis, providing a 
comprehensive understanding of how spatial and temporal factors interact and influence various phenomena. However, 
for this study the space time cube will be utilized to identify patterns, trends and differences across both space and time.

GIS as an Important Tool in Analyzing Spatial and Spatiotemporal Pattern of COVID-19 Geographic Information Systems 
(GIS) have become an essential tool for spatial studies in a variety of fields, including public health, environmental science, 
urban planning, and more. GIS allows for the processing, analysis, and visualization of data, providing unique insights 
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into complex ecological questions. Its use in health promotion, medicine, and epidemiology is gaining recognition, as it 
enables the integration of multiple data sources and the application of various spatial analytic techniques [24].

GIS approaches can help answer questions related to public health, such as identifying how disease rates vary across 
the country or exploring whether there are higher rates of disease in communities closer to certain environmental 
factors, such as industrial areas. By integrating and analyzing spatial data, GIS provides a vivid and meaningful way to 
understand complex patterns and relationships. 

In a review article on the application of GIS on COVID-19, research showed that hotspot analysis using kernel density 
functions or other density techniques was the most frequently used spatial analysis, followed by spatial autocorrelation 
analysis using global or local Moran’s Index in studies that involved spatial and spatiotemporal analysis. Utilized the 
space-time analysis technique in GIS to identify active high-risk transmission clusters of COVID-19 in Sergipe, Brazil 
[25,26]. 

The prospective space-time statistics detected “active” and emerging spatiotemporal clusters comprising six municipalities 
in the south-central region of the state. The spatial spread of epidemics is a critical property that depends on the 
epidemic mechanism, human mobility, and control strategies. Geospatial tools such as GIS and spatial statistics can be 
used to analyze and respond to the spatial spread of epidemics. By using GIS and spatial statistics, we can generate 
scientific information that can help to identify spatial correlations with other variables, such as demographic factors, 
environmental conditions, and human behavior, which can influence the spread of epidemics. 

GIS and spatial statistics can also help to identify transmission dynamics by mapping the spread of the disease over time 
and space. This information can be used to identify areas of high transmission and to target interventions, such as social 
distancing measures, contact tracing, and vaccination campaigns, to reduce the spread of the disease. The use of GIS 
and spatial statistics can help to generate scientific information that can guide public health responses to epidemics and 
help to mitigate their impact. By understanding the spatial spread of the disease, we can identify areas of elevated risk 
and take proactive measures to reduce transmission and prevent further spread [27].

Overall, the spatiotemporal trend of the pandemic in the United States demonstrated the complex nature of the virus 
and its ability to impact different regions and communities at different times. Despite ongoing efforts to mitigate the 
spread of the virus, the pandemic has had a profound impact on the country, with millions of confirmed cases and 
hundreds of thousands of deaths. The spatial and temporal disparities in the COVID-19 pandemic in the United States 
highlight the need for ongoing monitoring and analysis to better understand how the virus spreads and impacts different 
regions and communities. These findings can inform public health policies and interventions to mitigate the spread of 
the virus and save lives. 

GIS also offers a powerful spatial technique for generating scientific information that can help guide public health 
responses to epidemics. By leveraging the power of GIS, we can improve our understanding of the spatial dynamics of 
infectious diseases such as COVID-19 and develop evidence-based strategies that can mitigate their impact on public 
health.

Based on the review so far, the spatial and spatiotemporal pattern of COVID-19 cases and deaths in the United States 
had been evolving since the first case was reported in January 2020. 

Based on the variations in geographic distribution of the virus, it is evident that COVID-19 cases and deaths in the United 
States were not evenly distributed across the country. Some of the biggest states in the country with major airports, 
such as New York and California, had a higher number of cases and deaths than other states. Some studies found 
urban areas to have higher numbers of cases and deaths than rural areas, while others found rural areas to have higher 
COVID-19 cases and deaths. The number of COVID-19 cases and deaths in the United States fluctuated over time [28].

 There were peaks and valleys in the number of cases and deaths, which were influenced by factors such as public health 
interventions, changes in social distancing measures, and vaccination rates. Overall, the spatial and spatiotemporal 
pattern of COVID-19 cases and deaths in the United States is complex and evolving. As the pandemic continues to 
evolve, it is important to continually assess the geographic distribution of cases and deaths, as well as the factors 
that contribute to these patterns. This information can be used to identify areas that are at higher risk and to target 
resources and interventions to those areas. 

Ongoing research on the spatiotemporal pattern of COVID-19 cases and deaths can help
•	 Identify areas that are experiencing outbreaks or that are at higher risk of outbreaks, so that resources can be 

directed to those areas.
•	 Monitor changes in the geographic distribution of cases and deaths over time, so that response efforts can be 

adjusted as needed.
•	 Assess the effectiveness of public health interventions in different areas, so that best practices can be identified and 

shared.

https://www.primeopenaccess.com/international-journals/holistic-approaches-in-mental-health-and-wellness.asp


6Health Guard J Health Prev Med, 2025

•	 Identify and address disparities in the distribution of cases and deaths across different demographic groups and 
geographic areas.

Research Questions
The study aims to answer three main research questions
•	 Where were the hotspots of COVID-19 cases and deaths in Oklahoma from January 2020 to October 2023?
•	 Which areas experienced an increase or decrease in COVID-19 cases and deaths over time?
•	 Where were the clusters of places experiencing an increase and decrease in COVID-19 cases and deaths at the 

same time?

Methodology
Study Area
The state of Oklahoma provides a unique area for this study. The Oklahoma State Department of Health (OSDH) was 
the primary agency responsible for coordinating the state’s COVID-19 response. The OSDH provided regular updates 
on COVID-19 case numbers, hospitalizations, and deaths through its website and social media channels. The state 
also established a COVID-19 hotline for residents to call with questions or concerns. However, in terms of healthcare 
capacity, Oklahoma faced challenges during the pandemic due to a shortage of healthcare workers and hospital beds. 
One major limitation was the state’s low vaccination rate, which put residents at greater risk for severe illness and 
hospitalization from COVID-19. As of February 8, 2023, only around 60% of the state’s population was fully vaccinated, 
compared to the national average of around 69% [6,29].

Another limitation was the shortage of healthcare workers and hospital beds in the state. Hospitals in Oklahoma faced 
significant strain during surges in COVID-19 cases, with some hospitals reporting having to turn away patients due to 
lack of space and staff. At a later stage of the COVID-19 virus, the state implemented emergency measures to increase 
bed capacity and recruit healthcare workers and increase bed capacity, including the conversion of non-hospital facilities 
into COVID-19 treatment centers. Additionally, the state partnered with the Federal Emergency Management Agency 
(FEMA) to set up temporary medical facilities in response to surges in COVID-19 cases, implemented mobile vaccination 
clinics to reach underserved populations, and had partnered with pharmacies and healthcare providers to expand 
vaccine access. But these efforts were sometimes limited by shortages in staffing and resources.

Finally, Oklahoma faced challenges in addressing COVID-19 vaccine hesitancy and misinformation. Despite efforts to 
expand vaccine access and education, some residents remained skeptical of the vaccine and were unwilling to get 
vaccinated. This reluctance was sometimes fueled by misinformation and conspiracy theories circulating on social media 
and other channels. January 2022 was the month with the highest average cases, while April 2021 was the month with 
the highest average deaths in Oklahoma. As of February 16, 2023, there have been 1,281,551 total cases of COVID-19 
in Oklahoma and a provisional death count of 17,827 and 5,251 active cases (OSDH 2023). With a population of about 
3.987 million, it means at least 1 in 224 residents died from the coronavirus. As of March 23, 2023, an average of 291 
daily cases were reported in Oklahoma in the previous week. Cases had decreased by 43% and deaths by 47% [30].

Despite the measures taken by the state of Oklahoma to curb the spread of COVID-19, the virus continues to surge in 
the state. This highlights the importance of this research to better understand the current situation that would develop 
into more targeted and effective measures to lower the number of cases and deaths. Using GIS and spatial analysis 
techniques, this research aims to identify hotspots and clusters of COVID-19 cases, and deaths, assess the effectiveness 
of existing interventions, and develop evidence-based strategies to mitigate the spread of the virus. By understanding 
the spatial and temporal patterns of the disease, the study aims to identify vulnerable populations and areas that require 
targeted interventions and monitor the effectiveness of interventions over time.

This research using GIS and spatial analysis can provide valuable insights into the contemporary spread of COVID-19 in 
Oklahoma and guide the development of more effective strategies to control the disease. This can help to protect public 
health and prevent the continued surge of COVID-19 in the state.

Data Collection
For this study, secondary data was obtained and used for analysis. Up-to-date COVID-19 data were obtained from the 
OSDH at the zip code level from January 2020 until October 2023. The zip code level data is the smallest available unit 
data for COVID-19. The zip code level measures have more within unit variations compared to county. Census tract data 
has been established to provide better variation for spatial analysis. However, health data are not usually provided at the 
census tract level. In addition, studies have shown that there are few differences in results when comparing the zip code 
analysis and census tract analysis, hence utilizing the zip code also yields a reliable result. Lastly, the zip code boundary 
data shape file for Oklahoma was downloaded from the US Census Bureau Tiger/Line shapefile [31].

Data Analysis Procedure: Getis-Ord Gi Statistic
The Getis-Ord Gi statistic, also known as hot spot analysis, is one of the most-used methods to determine hotspots and 
clusters in health analysis. In this study, the Getis-Ord Gi statistic is used to determine the spatial pattern of COVID-19 
cases and deaths in Oklahoma. The Getis-Ord Gi* statistics are a measure of spatial autocorrelation that assesses 
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whether a feature is clustered or randomly distributed in geographic space. It was developed by Getis and Ord 1992 and 
is widely used in geography, urban planning, and related fields. The Getis-Ord Gi* statistic is calculated with respect to 
a specified threshold distance (defined by the user) rather than to an inverse distance, as with Moran’s I [32,33].

GIS uses the formula below in calculating the Gi* statistic for a feature i in a set of n

Equation 1: 
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xj is the value of the feature j
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wi, j is a spatial weight that measures the proximity of feature i to feature j

n is the total number of units in the study area

S is the variance of the values of all the features

This formula for the Gi* statistics is a z-score, so no further calculations are needed (Amiri et al.

2021; Mahmood 2022). For statistically significant positive z-scores, the concentration of high

values increases with increasing z-score (hot spot), whereas for statistically significant negative

z-score, the concentration of low values results in lower z-score (cold spot) (Esri 2023). Positive

values indicate clustering (i.e., high values tend to be near other high values), negative values

indicate clustering (i.e., low values tend to be near other low values), and values close to zero
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 is the mean value of all the features?
wi, j is a spatial weight that measures the proximity of feature i to feature j.
n is the total number of units in the study area.
S is the variance of the values of all the features.

This formula for the Gi* statistics is a z-score, so no further calculations are needed [34,35]. For statistically significant 
positive z-scores, the concentration of high values increases with increasing z-score (hot spot), whereas for statistically 
significant negative z-score, the concentration of low values results in lower z-score (cold spot). Positive values indicate 
clustering (i.e., high values tend to be near other high values), negative values indicate clustering (i.e., low values tend 
to be near other low values), and values close to zero indicate randomness (i.e., high values or low values are not related 
to the spatial distribution of other high values or low values) [36].

The statistical significance of the Gi* statistic can be assessed using a permutation test or a Monte Carlo simulation, in 
which the spatial locations of the features are randomly shuffled many times to create a null distribution of the statistic 
under the assumption of random spatial arrangement. The observed value of the Gi* statistics can then be compared to 
this null distribution to determine if it is statistically significant at a given level of confidence . Some major advantages 
of the Gi* statistics are that it is a simple and easy-to-use measure of spatial autocorrelation that does not require 
advanced statistical knowledge, especially as it can be easily calculated with ArcGIS software. It provides a quantitative 
and interpretable measure of the degree and direction of spatial clustering or dispersion, which can be used to identify 
spatial patterns and trends in geographic data [32].

The Gi* statistic can be applied to a wide range of data types, including both continuous and discrete variables, and 
it is robust to outliers and non-normal distributions. It can be used to compare the spatial autocorrelation of different 
variables or at different scales, which can help to identify factors that contribute to spatial patterns. Lastly, the Gi* statistic 
is widely used in recent studies compared to the local Moran’s I due to its many advantages as outlined by Braithwaite 
and Li (2007; 285-287). Despite these advantages, the technique has been found to have several limitations. First, it 
assumes that spatial weights are known and accurately reflect the underlying spatial relationships between features, 
which can be subjective and arbitrary. 

Given that the weights are usually subjective, this can lead to bias and variations in the result. Different weighting 
schemes can lead to different results and interpretations. Also, it does not account for the underlying processes or 
mechanisms that generate spatial patterns, which can limit the ability to draw causal inferences. Lastly, it can be 
affected by edge effects and boundary conditions, which can distort the results and lead to false conclusions [37,38].

In conclusion, while the Getis-Ord Gi* statistics are not without limitations, it remains a valuable and widely used tool 
for spatial analysis. It is a useful and efficient tool for analyzing local patterns of disease and can provide valuable 
insights for policymaking and management. For example, it can be used to identify “hotspots” of disease incidence or 
prevalence, which can help to target limited resources and interventions to areas of greatest need. It can also be used 
to evaluate the effectiveness of disease control measures and monitor changes in disease patterns over time. Moreover, 
the Getis-Ord Gi* statistics can be combined with other methods, such as spatial regression models and geographic 
information systems (GIS) to provide a more comprehensive and robust analysis of spatial patterns and their underlying 
determinants [39]. 

This can help to improve the accuracy and reliability of the results and enhance the usefulness of the analysis for 
decision-making.
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Space-Time Cube Statistics
Many academic disciplines strive to identify and understand patterns in time series, but geographers face the biggest 
challenges because they look at the world through a spatial lens. The space-time cube can help address this data 
management problem. The space-time cube is a powerful tool for visualizing and analyzing geospatial data that varies 
over time. It is a three-dimensional representation of a set of spatiotemporal data points, where the x-axis and y-axis 
represent spatial coordinates/geography, and the z-axis represents time [40,41]. 

Each cube is referred to as a Bin. Geographers face unique challenges in analyzing time series data because they are 
interested in how spatial patterns change over time. This requires managing and analyzing large amounts of data that 
are both spatially and temporally referenced. The space-time cube is an effective solution to this problem because it 
allows geographers to explore and analyze spatiotemporal data in a single, intuitive framework. In the space-time cube, 
each data point is represented as a block with a specific spatial location, time, and attribute value. These blocks can be 
stacked to create a 3D visualization that allows users to explore patterns and trends over time . The cube can be rotated 
and sliced to provide different perspectives on the data and reveal spatial and temporal patterns that might be missed 
with other visualization techniques [42,43]. 

By using the space-time cube (Figure 2.1), geographers can identify and understand patterns in time series data more 
effectively. They can analyze how these patterns change over time and how they relate to specific spatial locations. 
This information can be used to inform a range of applications, from urban planning and environmental monitoring to 
disaster response and public health.

22

Figure 2.1: Space time cube (ArcMap 2023)
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are another effective technique but becomes less useful as the scale of data analyzed becomes
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Figure 2.1: Space Time Cube (ArcMap 2023)

The space-time cube is not the only way to explore spatial patterns across time. Small multiples are another effective 
technique but becomes less useful as the scale of data analyzed becomes finer [44].

In GIS, the space time cube is conducted using the create space time cube tool. Once the spatial and temporal data is 
imported into the software, the tool allows one to define the parameters, such as the spatial extent, and time extent, 
which could be days, months or years depending on the data and analysis needs. For this study, the data used was 
reported weekly on a three-year basis from January 2020 to October 2023. The space time cube would be used to 
capture the three-year period as it allows for easy identification of longer trends and cycles that may not be visibly 
apparent in shorter time frames. In addition, this duration can reveal seasonal variation, annual patterns, and the overall 
direction of change. This means that studying shorter periods such as a single year or months may be affected by short 
term anomalies or seasonal effects which may result in misleading conclusions. 

The result of this study using a three-year period would provide a comprehensive understanding of how COVID -19 
evolved in the state as well as enable policy makers to make more informed and strategic decisions regarding the virus. 
In addition, Policy makers can prioritize resource allocation based on identified trends and direct resources to locations 
and areas with the greatest need. It could also help in providing more informed predictions and mange risks proactively, 
reducing the impact of potential problems in the future.

In answering the second and third research questions (Which areas are experiencing an increase or decrease in 
COVID-19 cases and deaths over time? Where are the clusters of places experiencing an increase and decrease in 
COVID-19 cases and deaths at the same time?) The ArcGIS Pro software is used to calculate the space time cube that 
would be used for further analysis. 
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Mann-Kendall Trend Statistics
The Mann-Kendall trend statistic is a non-parametric method used to detect trends in time series data. The Mann-
Kendall test is based on the notion of rank correlation between data points in a time series. It involves calculating 
the difference between all pairs of data points and counting the number of pairs where the direction of the difference 
(i.e., increasing or decreasing) is the same. This count is known as the Kendall score. The Mann-Kendall test is used to 
determine whether there is a significant trend in the time series data [45,46]. 

The null hypothesis of the test is that there is no trend, while the alternative hypothesis is that there is a trend. The 
Mann-Kendall test is widely used in climate research, hydrology, and other fields where trends in time series data are 
of interest. It has the advantage of being robust to outliers and non-normality in the data. However, it can be less 
powerful than parametric methods when the assumptions of those methods are met. To answer the second research 
question, which is to identify the spatial trend of COVID-19 cases and deaths in Oklahoma, the Mann-Kendall trend 
test is performed in ArcGIS Pro using the space time cube created for the data. The software provides tools for spatial 
and temporal data analysis, including trend analysis. ArcGIS Pro provides a user-friendly interface for conducting trend 
analysis on space-time series data and allows for the visualization of the results.
 
Time Series Clustering
To answer the last research question, which is to identify areas that experienced increases or decreases in COVID-19 
cases and deaths at the same time, time series clustering statistics is employed using ArcGIS Pro. Time series clustering 
is a method of grouping similar time series data into clusters or groups based on their similarity in pattern and behavior 
over time. This approach is useful for analyzing large volumes of time series data, identifying patterns, detecting 
anomalies and classification of time series data [47]. 

In ArcGIS, we can group time series together based on two approaches; if they have similar values at the same time, or 
if they have similar profiles. By similar values, the time series clustering groups time series data based on the similarity 
in their value, i.e. whether they are high or low, whereas by cluster profile, the time series cluster groups the time series 
data based on whether they are increasing or decreasing at the same time regardless of the value. For this research, the 
time series clustering by profile is utilized. Recognizing dynamic changes in time-series data involves identifying when 
the data undergoes sudden changes or transitions. 

This is important in fields such as health geography to determine the effectiveness of policies. Evaluating the 
effectiveness of policies involves assessing whether they have achieved their intended outcomes and whether any 
unintended consequences have occurred. Clustering time-series data in this case based on whether they are increasing 
or decreasing at the same time can provide valuable insights and help solve complex problems in various fields. 
Additionally, clustering time-series data based on whether they are increasing or decreasing at the same time can lead 
to improved prediction of future trends. 

By identifying patterns in the data, it may be possible to make more accurate predictions about future trends and adjust 
policies or strategies accordingly. Determining the number of clusters when conducting time series clustering involves 
a range of statistical methods and approaches. Some of which involve using appropriate clustering algorithms such as 
K- means, hierarchical clustering, and visualization. For this study visualization techniques were utilized. This involves 
visualizing the clusters on a map to see the spatial distribution and then checking for geographic coherence to ensure 
that the temporal patterns are meaningful and distinct.

Results
To answer the first research question, “where were the hotspots of COVID-19 cases and deaths in Oklahoma from 
January 2020 to October 2023?” a Gi* hotspot analysis was carried out using GIS based on the rate of COVID-19 cases 
and deaths per 1000 population. The result showed varied locations of hotspots for COVID-19 cases and deaths in 
Oklahoma. Also, the distribution of the rate of COVID-19 cases and deaths are mapped (Figure 2.2 & 2.3), to show how 
the virus is distributed across the state. Locations in red shows a higher cases/deaths compared to locations in yellow 
color. For the hotspot analysis of COVID-19 cases rate (Figure 2.4), significant hotspots of COVID-19 virus with a 99% 
significant level can be found in zip codes in Oklahoma, Cleveland, McClain, Pottawatomie, the eastern part of Grandy, 
and Canadian Counties. For COVID-19 deaths, significant hotspots from the Gi* analysis with a 95% and 90% statistical 
level are shown in Figure 2.5. From the map statistical hotspots of COVID-19 deaths are found in zip codes in Cherokee, 
Mayes, Muskogee, and Stephens Counties and some parts of other counties such as Jefferson, Blaine, and Roger Mills.
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Figure 2.4: Significant hotspots and cold spots of COVID-19 case rate per 1000 population.

Figure 2.5: Significant hotspots and cold spots of COVID-19 death rate per 1000 population

Figure 2.4: Significant Hotspots and Cold Spots of Covid-19 Case Rate Per 1000 Population
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Figure 2.4: Significant hotspots and cold spots of COVID-19 case rate per 1000 population.

Figure 2.5: Significant hotspots and cold spots of COVID-19 death rate per 1000 population
Figure 2.5: Significant Hotspots and Cold Spots of Covid-19 Death Rate Per 1000 Population

The second research question, which identifies areas experiencing an increase or decrease in COVID-19 cases and 
deaths over time, was answered using the space time cube analysis in GIS, which uses the Mann-Kendall test statistical 
method to determine statistical spatial trend in the data. First, the weekly reported COVID-19 case, and death data were 
explored using the data engineering tool in GIS to create a bar chart based on the sum of the weekly reported count 
data (Figures 2.6 and 2.7). The result of the COVID-19 cases on a global scale with a trend statistic value of -0.05999 
and a trend p-value of 0.9522 indicates that there is no significant statistical trend direction in the data. However, on a 
local scale, a few zip codes showed significant spatiotemporal increases and decreases in COVID-19 cases (Figure 2.8). 

For example, Texas County showed a 99% significant confidence of a down trend/decrease in COVID-19 cases whereas 
Pontotoc County had significant uptrend of the COVID-19 virus. For the COVID-19 deaths the space time cube test on 
a global scale revealed a significant decreasing trend direction of the virus with a -5.6002 significant trend statistic and 
0.000 trend p-value. The local scale results also reveal clusters of zip codes showing significant downtrend direction of 
COVID-19 deaths with few zip codes having no significant trend and no location showing an upward trend (Figure 2.9).
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Figure 2.6: Sum of weekly COVID-19 cases

Figure 2.7: Sum of weekly COVID-19 deaths

Figure 2.6: Sum of Weekly COVID-19 Cases
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Figure 2.6: Sum of weekly COVID-19 cases

Figure 2.7: Sum of weekly COVID-19 deathsFigure 2.7: Sum of Weekly COVID-19 Deaths
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Figure 2.8: Space-time cube trend statistics of COVID-19 cases

Figure 2.9: Space-time cube trend statistics of COVID-19 deaths

To answer the third research question, a time series cluster analysis in GIS is carried out to

determine where the clusters of location experiencing increase and decrease in COVID-19 cases

and deaths at the same time are located. Pseudo-F- statistics were used to determine the number
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Figure 2.8: Space-Time Cube Trend Statistics of COVID-19 Cases

Figure 2.9: Space-Time Cube Trend Statistics of COVID-19 Deaths
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To answer the third research question, a time series cluster analysis in GIS is carried out to determine where the clusters 
of location experiencing increase and decrease in COVID-19 cases and deaths at the same time are located. Pseudo-F- 
statistics were used to determine the number of clusters. Pseudo F statistics are used in cluster analysis to evaluate and 
determine the optimal number of clusters. It is calculated as a ratio of the variance between clusters and within clusters. 

Larger pseudo-F statistics suggest that the clusters are well dispersed with large variance between them and small 
variance within each cluster whereas a lower cluster indicates that the variance are not well dispersed with small 
variance between the clusters and large variance within each cluster. For COVID-19 cases 2 clusters were determined 
based on the highest pseudo-F value, whereas for COVID-19 deaths 3 clusters were determined based on the highest 
Pseudo F value (Table 1 & Table 2). 

The time series cluster map is accompanied with a line chart that describes the movement of the data in time. The result 
of the COVID-19 cases shows clusters of places that experience similar traits of the virus at the same time (Figure 2.10). 
The chart shows the movement of each cluster at a particular time (Figure 2.11). Locations in blue (Group 1) had the 
highest rate of COVID-19 during the period compared to locations in red (Group 2) (Figure 2.10). Group 1 experienced 
the highest COVID-19 cases between November 1, 2020, to December 6, 2020. Between December 19, 2021, and 
February 6, 2022, Both Group 1 and Group 2 tend to have a high spike in COVID-19 cases. 

Number of Clusters Pseudo F
2 54.281
3 42.454
4 32.125
5 26.996
6 25.069
7 23.138
8 22.096
9 20.455
10 20.078
Note: Optimal number of clusters is 2 based on the highest 
pseudo F statistic.

Table 1: Pseudo F-Statistic Summary for COVID-19 Case Rate
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9 20.455

10 20.078

Note: Optimal number of clusters is 2 based on the highest pseudo F statistic.

Table 1: Pseudo F-Statistic Summary for COVID-19 case rate

Figure 2.10: Time series clustering COVID-19 case map.
Figure 2.10: Time Series Clustering COVID-19 Case Map
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Figure 2.11: Time series clustering COVID-19 case map chart.

For COVID 19 deaths, the result of the time series clustering (Figures 2.12 and 2.13) reveals

places experiencing similar spatiotemporal trend of COVID-19 deaths.

Number of
Clusters

Pseudo
F

2 0.000

3 55.388

4 52.278

5 48.334

6 46.473

7 45.053

8 43.537

9 41.576

10 40.243

Note: Optimal number of clusters is 3 based on the highest pseudo F statistic.

Figure 2.11: Time Series Clustering COVID-19 Case Map Chart

For COVID 19 deaths, the result of the time series clustering (Figures 2.12 and 2.13) reveals places experiencing similar 
spatiotemporal trend of COVID-19 deaths.

Number of Clusters Pseudo F
2 0.000
3 55.388
4 52.278
5 48.334
6 46.473
7 45.053
8 43.537
9 41.576
10 40.243
Note: Optimal number of clusters is 3 based on the highest pseudo 
F statistic.

Table 2: Pseudo F-Statistic Summary for COVID-19 Deaths Rate
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Table 2: Pseudo F-Statistic Summary for COVID-19 deaths rate

Figure 2.12: Time series clustering COVID-19 deaths rate map

Figure 2.13: Time series clustering COVID-19 deaths map chart

As shown in the map, zip codes in blue (Group 1) experienced zero spatiotemporal deaths trend,

whereas zip codes in red (Group 2) and green (Group 3) had spikes of COVID-19 deaths at

Figure 2.12: Time Series Clustering COVID-19 Deaths Rate Map
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Table 2: Pseudo F-Statistic Summary for COVID-19 deaths rate

Figure 2.12: Time series clustering COVID-19 deaths rate map

Figure 2.13: Time series clustering COVID-19 deaths map chart

As shown in the map, zip codes in blue (Group 1) experienced zero spatiotemporal deaths trend,

whereas zip codes in red (Group 2) and green (Group 3) had spikes of COVID-19 deaths at

Figure 2.13: Time Series Clustering COVID-19 Deaths Map Chart

As shown in the map, zip codes in blue (Group 1) experienced zero spatiotemporal deaths trend, whereas zip codes in 
red (Group 2) and green (Group 3) had spikes of COVID-19 deaths at different times, with each group showing similar 
spatiotemporal trend, respectively. Between December 13, 2020, and January 3, 2021, Group 3 experienced the highest 
death rate whereas Group 2 experienced the highest death rate between December 19, 2021, and February 6, 2022. 
However, after March 5, 2023, the death rate seems to have dropped to zero for both groups. 

To better understand and explain some of the factors that may lead to the similarities and dissimilarities in patterns 
shared by the time series clusters result, the population density as well as the median income of Oklahoma state were 
mapped using ACS 5-year estimate data (Figure 2.14 & 2.15)
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Figure 2.14: Median income map
Figure 2.14: Median Income Map
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Figure 2.15: Population density map
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Figure 2.15: Population Density Map

The COVID-19 case time series clustering map reveals that most areas with higher spikes in COVID-19 cases, often 
share common traits of lower population density and higher median income. This suggests that the lower population 
density must have caused a reduced person to person contacts. However, the income level shows higher economic 
activity and mobility which may be contributing to the spread of the virus. 

Residents in those areas might have engaged in more social and professional associations, increasing their exposure. 
For COVID-19 deaths, based on the time series clustering map and the population density map, group 1 with zero 
death rates recorded tend to have higher income and lower population density, group 2 tend to show places with both 
low population and high population density and major places with high income, and in group 3, majority of the places 
showed low population density with a mixed of high and low median income population. 

For group 1, higher income areas have better access to health care services, including preventive care and testing hence 
more likelihood for a lower or zero death rate. For group 2 and group 3, these areas tend to have experience some 
spikes in COVID-19 deaths at a similar time of the year, which is around the Fall season suggesting related death to have 
to do with the cold weather. Colder weather leads to more indoor gatherings, where viruses spread easily. In addition, 
the fall season often brings an increase in other respiratory diseases such as influenza, which can further exacerbate the 
impact of COVID-19 leading to related deaths.

Discussion
The objective of this study has been to identify statistical hotspots of COVID-19 cases and deaths in Oklahoma, 
determine the statistical trend of the virus, and identify clusters of location experiencing similar trend of the virus 
based on profile. The results of the study found statistical hotspots of COVID-19 cases and deaths. For COVID-19 
cases, the cluster of high significant cases were found around Oklahoma, Cleveland, and McClain Counties (Figure 2.4). 
Alternatively, clustered COVID-19 deaths were found in multiple locations such as Cherokee, Stephens, Mayes, and 
Muskogee Counties (Figure 2.5). Clusters of COVID-19 cases are found around where significant clusters of Hispanics 
and Blacks are located, and clusters of COVID-19 deaths are found where significant clusters of American Indians are 
located. According to the U.S. Census Bureau’s 2020 data, 46% of the population in Oklahoma County identifies as 
minorities, with over 30% being Black and Hispanic [48]. 

This demographic composition corresponds with the observed concentration of COVID-19 cases in the county, particularly 
in urban areas such as Oklahoma City, where higher population densities and increased interactions may contribute to 
the spread of the virus. Whereas, among the 54% of minorities living in Cherokee were hotspots of COVID-19 deaths 
were found, over 31% were American Indian. The result also reveals that although significant hotspots of COVID-19 
cases are found around major cities such as Oklahoma City, significant hotspots of deaths are found in the rural 
areas (Figure 2.4). The result of the study agrees with past research such as Amin , Hamidi, Sabouri, and Ewing, and 
Andersen, who all found high concentration of COVID-19 cases in urban areas. In addition, the study also revealed the 
effect of the pandemic on minority groups, which is in accordance with previous research [9,11,12,16]. 

These studies revealed that high concentrations of COVID-19 virus cases and deaths were in areas where there are high 
concentrations of minorities. For example, Amune found similar hotspots of COVID-19 cases where Blacks and Hispanics 
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are highly concentrated and similar hotspots of COVID-19 deaths where American Indians are highly concentrated. 
The result of the study suggests the need to implement targeted public health measures in urban hotspots, such as 
increased testing, vaccination campaigns, and public awareness initiatives. 

This is particularly important in areas with high Hispanic and Black populations, where socioeconomic factors might 
contribute to higher transmission rates and worse outcomes. In addition, the study has shown that minority communities 
have been disproportionately affected by COVID-19, with higher rates of infection and mortality [7,9]. 

Therefore, tailored interventions in these communities can help address these disparities. The study also reveals the 
need to improve healthcare access and resources in rural areas with significant American Indian populations to address 
higher death rates. Rural areas often face challenges such as fewer healthcare facilities, longer distances to travel for 
care, and lower health literacy. Therefore, there is need to focus on mobile health units, telemedicine, and community 
health workers to bridge the gap in healthcare access.

Furthermore, in a bid to understand the spatial trend of the virus, the study has found locations still experiencing 
significant uptrend in COVID-19 cases as of October 2023. This local result is useful to policy makers to help determine 
targeted areas for immediate response. In addition, researchers can concentrate on these areas to determine factors 
responsible for the uptrend which may include vaccination problems and other socioeconomic factors. For COVID-19 
deaths, the study found only a significant downtrend in COVID-19 deaths, with majority of the zip codes experiencing a 
significant decrease in COVID-19 deaths. The result is in accordance with a recent paper by Horita and Fukumoto who 
found that the global COVID-19 case fatality had decreased by 96.8% with 95% confidence level [49]. 

However, there is need to investigate areas with continuous uptrends in COVID-19 cases to identify underlying factors 
such as vaccination challenges, public compliance with health measures, and socioeconomic conditions. Understanding 
these factors can help tailor more effective interventions. In addition, detailed epidemiological studies and community 
surveys can provide insights into barriers to vaccination and adherence to public health guidelines.

Lastly, this study was able to determine clusters of locations experiencing similar spatiotemporal trend in the COVID-19 
cases and deaths based on profile (i.e., places experiencing decrease and increase at this same time). This particular 
result is useful in determining the several factors responsible for the observed trend. Hence, the population density 
map and the median income map as shown in Figures 2.14 & 2.15 further throw more light on the likely reasons for 
the similar trend observed in specific groups. For the COVID-19 case time series clustering results, the observation 
that areas with higher spikes in COVID-19 cases tend to have lower population densities and higher median incomes 
highlights the complex interplay of sociodemographic and economic factors in the spread of the virus. 

By understanding these patterns, public health officials and policymakers can develop more effective, tailored strategies 
to mitigate the impact of COVID-19, ensuring that interventions are both context-sensitive and evidence-based. This 
approach will help in managing current and future public health challenges more efficiently. For COVID-19 deaths time 
series clustering result, the observed seasonal spikes in COVID-19 deaths in Group 2 and Group 3 areas, particularly 
during the Fall, highlight the need for targeted and seasonal public health interventions. 

This includes promoting flu vaccinations, reinforcing public health guidelines, and ensuring healthcare systems are 
prepared for potential increases in caseloads. Seasonal patterns in respiratory illnesses, including COVID-19, have 
been noted globally, with colder months often seeing increased transmission due to more indoor gatherings and lower 
humidity levels that favor viral spread [50]. 

The result of the study also stresses the need to address healthcare disparities by ensuring equitable distribution of 
resources and services among minority groups and rural populations. This includes not only healthcare services but 
also economic and social support to mitigate the broader impacts of the pandemic. Policies should focus on social 
determinants of health, such as improving living conditions, access to nutritious food, and economic opportunities, 
which can significantly affect health outcomes. By understanding the factors contributing to these patterns, public 
health officials and policymakers can implement effective strategies to mitigate the impact of COVID-19 during high-risk 
periods, ensuring better health outcomes and preparedness for future outbreaks. 

The spatial and spatiotemporal patterns of COVID-19 cases and deaths identified in this study align with existing literature, 
highlighting the significant impact of sociodemographic and economic factors on health outcomes. By addressing the 
identified hotspots and understanding the underlying causes, public health officials and policymakers can implement 
targeted and effective strategies to mitigate the impact of COVID-19 and prepare for future public health challenges. 

The findings from this study provide a foundation for further research and informed decision-making, ensuring that 
interventions are context-sensitive and evidence-based. This approach will help in managing current and future public 
health challenges more efficiently. In addition, the result of this study can be modeled into future endemic and pandemic 
related issues to ensure timely interventions among health programs professionals and policy makers.
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Strengths and Limitations
The study utilizes up-to-date COVID-19 data in Oklahoma obtained from the Oklahoma State Department of Health from 
January 12, 2020, to October 8, 2023, the time this study was conducted. The use of up-to-date data for the analysis 
of the study is an advantage as it provides an updated significant result of COVID cases and deaths in Oklahoma. In 
addition, the study utilizes GIS methods for its analysis, which serves as an advantage as it allows for a contemporary 
and greater efficiency and reliability in the results. However, one limitation of the study is that for some suppressed zip 
codes in the data that have values less than six cases of deaths due to privacy, an average value of three was used. 

Although this method of accounting for suppressed data has been proven effective, it is also a disadvantage as it only 
provides an estimated value for those cells and not an actual value. In addition, the COVID-19 data used for this study 
were compiled by the OSDH based on probable and confirmed cases and deaths. Furthermore, there were few cells in 
the data that the OSDH were unable to associate with any zip code due to wrong addresses. Such data were removed 
from the analysis, and this may lead to distorted results due to unavoidable misrepresentation in the data. However, 
given that the results were in conformity with current literature, the study provides a useful contemporary understanding 
of COVID-19 cases and deaths in Oklahoma that could be useful for policy makers and health program management in 
making contemporary COVID-19 related decisions for the state.

Conclusions
This study examined the spatial and spatiotemporal pattern of COVID-19 cases and deaths in Oklahoma, providing a 
contemporary useful understanding of the virus in the state. GIS was used for the study to perform hotspot analysis 
using the Getis-Ord Gi* statistics, trend analysis using space-time cubes, and spatiotemporal cluster analysis using 
space-time cube and time series clustering. Hotspots of COVID-19 cases were found around Oklahoma City where 
hotspots of Blacks and Hispanics are located. In contrast for COVID-19 deaths, significant hotspots pattern was found 
in rural areas majorly where significant hotspots of American Indians are located. In addition, a significant uptrend of 
COVID-19 cases was found in few zip codes, whereas a significant decrease in COVID-19 deaths was found in most 
zip codes located in the state. Lastly, clusters of locations experiencing similar increase and decrease trends in the 
COVID-19 cases and deaths were identified.

The result of this study will be useful to health care management and policy makers in identifying current locations 
in need of immediate attention with regards to COVID-19 virus. In this case attention may be given to locations such 
as Pontotoc and Carter Counties, which were still experiencing a significant increase in COVID-19 cases in October 
2023 when this study was conducted. In addition, future work needs to be done to determine the common factors 
among those locations experiencing similar uptrends and down trend in COVID-19 cases and deaths to enable better 
interventions in the case of future endemic and pandemic situations in the state [51-53]. 
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